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Version: 0.14.3 ~ Date: 20 November 2020

A multigrid solver for 3D electromagnetic diffusion with tri-axial electrical anisotropy. The matrix-free solver
can be used as main solver or as preconditioner for one of the Krylov subspace methods implemented in
scipy.sparse.linalg, and the governing equations are discretized on a staggered Yee grid. The code is written
completely in Python using the NumPy/SciPy-stack, where the most time- and memory-consuming parts are sped
up through jitted numba-functions.
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CHAPTER 1

More information

For more information regarding installation, usage, contributing, roadmap, bug reports, and much more, see

• Website: https://empymod.github.io,

• Documentation: https://emg3d.readthedocs.io,

• Source Code: https://github.com/empymod/emg3d,

• Examples: https://empymod.github.io/emg3d-gallery.
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CHAPTER 2

Features

• Multigrid solver for 3D electromagnetic (EM) diffusion with regular grids (where source and receiver can
be electric or magnetic).

• Compute the 3D EM field in the complex frequency domain or in the real Laplace domain.

• Includes also routines to compute the 3D EM field in the time domain.

• Can be used together with the SimPEG-framework.

• Can be used as a standalone solver or as a pre-conditioner for various Krylov subspace methods imple-
mented in SciPy, e.g., BiCGSTAB (scipy.sparse.linalg.bicgstab) or CGS (scipy.sparse.linalg.cgs).

• Tri-axial electrical anisotropy.

• Isotropic magnetic permeability.

• Semicoarsening and line relaxation.

• Grid-size can be anything.

• As a multigrid method it scales with the number of unknowns N and has therefore optimal complexity O(N).

5
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CHAPTER 3

Installation

You can install emg3d either via conda (preferred):

conda install -c conda-forge emg3d

or via pip:

pip install emg3d

Minimum requirements are Python version 3.7 or higher and the modules scipy and numba. Various other pack-
ages are recommended or required for some advanced functionalities (xarray, discretize, matplotlib,
h5py, empymod, scooby). Consult the installation notes in the manual for more information regarding instal-
lation, requirements, and soft dependencies.
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CHAPTER 4

Citation

If you publish results for which you used emg3d, please give credit by citing Werthmüller et al. (2019):

Werthmüller, D., W. A. Mulder, and E. C. Slob, 2019, emg3d: A multigrid solver for 3D electromag-
netic diffusion: Journal of Open Source Software, 4(39), 1463; DOI: 10.21105/joss.01463.

All releases have a Zenodo-DOI, which can be found on 10.5281/zenodo.3229006.

See CREDITS for the history of the code.
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CHAPTER 5

License information

Copyright 2018-2020 The emg3d Developers.

Licensed under the Apache License, Version 2.0, see the LICENSE-file.

5.1 Getting started

The code emg3d ([WeMS19]) is a three-dimensional modeller for electromagnetic (EM) diffusion as used, for in-
stance, in controlled-source EM (CSEM) surveys frequently applied in the search for, amongst other, groundwater,
hydrocarbons, and minerals.

The core of the code is primarily based on [Muld06], [Muld07], and [Muld08]. You can read more about the
background of the code in the chapter Credits. An introduction to the underlying theory of multigrid methods is
given in the chapter Theory, and further literature is provided in the References.

5.1.1 Installation

You can install emg3d either via conda:

conda install -c conda-forge emg3d

or via pip:

pip install emg3d

Minimum requirements are Python version 3.7 or higher and the modules scipy and numba. Various other
packages are recommended or required for some advanced functionalities, namely:

• xarray: For the Survey class (many sources and receivers at once).

• discretize: For advanced meshing tools (fancy mesh-representations and plotting utilities).

• matplotlib: To use the plotting utilities within discretize.

• h5py: Save and load data in the HDF5 format.

• empymod: Time-domain modelling (utils.Fourier).

• scooby: For the version and system report (emg3d.Report()).

11
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If you are new to Python we recommend using a Python distribution, which will ensure that all dependencies
are met, specifically properly compiled versions of NumPy and SciPy; we recommend using Anaconda. If you
install Anaconda you can simply start the Anaconda Navigator, add the channel conda-forge and emg3d will
appear in the package list and can be installed with a click.

Using NumPy and SciPy with the Intel Math Kernel Library (mkl) can significantly improve computation time.
You can check if mkl is used via conda list: The entries for the BLAS and LAPACK libraries should contain
something with mkl, not with openblas. To enforce it you might have to create a file pinned, containing the
line libblas[build=*mkl] in the folder path-to-your-conda-env/conda-meta/.

5.1.2 Basic Example

Here we show a very basic example. To see some more realistic models have a look at the gallery. This particular
example is also there, with some further explanations and examples to show how to plot the model and the data;
see «Minimum working example». It also contains an example without using discretize.

First, we load emg3d and discretize (to create a mesh), along with numpy:

>>> import emg3d
>>> import discretize
>>> import numpy as np

First, we define the mesh (see discretize.TensorMesh for more info). In reality, this task requires some
careful considerations. E.g., to avoid edge effects, the mesh should be large enough in order for the fields to
dissipate, yet fine enough around source and receiver to accurately model them. This grid is too small, but serves
as a minimal example.

>>> grid = discretize.TensorMesh(
>>> [[(25, 10, -1.04), (25, 28), (25, 10, 1.04)],
>>> [(50, 8, -1.03), (50, 16), (50, 8, 1.03)],
>>> [(30, 8, -1.05), (30, 16), (30, 8, 1.05)]],
>>> x0='CCC')
>>> print(grid)

TensorMesh: 49,152 cells

MESH EXTENT CELL WIDTH FACTOR
dir nC min max min max max
--- --- --------------------------- ------------------ ------
x 48 -662.16 662.16 25.00 37.01 1.04
y 32 -857.96 857.96 50.00 63.34 1.03
z 32 -540.80 540.80 30.00 44.32 1.05

Next we define a very simple fullspace model with 𝜌𝑥 = 1.5 Ω m, 𝜌𝑦 = 1.8 Ω m, and 𝜌𝑧 = 3.3 Ω m. The source is
an x-directed dipole at the origin, with a 10 Hz signal of 1 A.

>>> model = emg3d.models.Model(
>>> grid, property_x=1.5, property_y=1.8, property_z=3.3)
>>> sfield = emg3d.fields.get_source_field(
>>> grid, src=[0, 0, 0, 0, 0], freq=10.0)

Now we can compute the electric field with emg3d:

>>> efield = emg3d.solve(grid, model, sfield, verb=4)

:: emg3d START :: 15:24:40 :: v0.13.0

MG-cycle : 'F' sslsolver : False
semicoarsening : False [0] tol : 1e-06
linerelaxation : False [0] maxit : 50
nu_{i,1,c,2} : 0, 2, 1, 2 verb : 3

(continues on next page)
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(continued from previous page)

Original grid : 48 x 32 x 32 => 49,152 cells
Coarsest grid : 3 x 2 x 2 => 12 cells
Coarsest level : 4 ; 4 ; 4

[hh:mm:ss] rel. error [abs. error, last/prev] l s

h_
2h_ \ /
4h_ \ /\ /
8h_ \ /\ / \ /

16h_ \/\/ \/ \/

[11:18:17] 2.623e-02 after 1 F-cycles [1.464e-06, 0.026] 0 0
[11:18:17] 2.253e-03 after 2 F-cycles [1.258e-07, 0.086] 0 0
[11:18:17] 3.051e-04 after 3 F-cycles [1.704e-08, 0.135] 0 0
[11:18:17] 5.500e-05 after 4 F-cycles [3.071e-09, 0.180] 0 0
[11:18:18] 1.170e-05 after 5 F-cycles [6.531e-10, 0.213] 0 0
[11:18:18] 2.745e-06 after 6 F-cycles [1.532e-10, 0.235] 0 0
[11:18:18] 6.873e-07 after 7 F-cycles [3.837e-11, 0.250] 0 0

> CONVERGED
> MG cycles : 7
> Final rel. error : 6.873e-07

:: emg3d END :: 15:24:42 :: runtime = 0:00:02

So the computation required seven multigrid F-cycles and took just a bit more than 2 seconds. It was able to
coarsen in each dimension four times, where the input grid had 49,152 cells, and the coarsest grid had 12 cells.

5.1.3 Related ecosystem

To create advanced meshes it is recommended to use discretize from the SimPEG framework. It also comes with
some neat plotting functionalities to plot model parameters and resulting fields. Furthermore, it can serve as a link
to use PyVista to create nice 3D plots even within a notebook.

Projects which can be used to compare or validate the results are, e.g., empymod for layered models or SimPEG
for 3D models. It is also possible to create a geological model with GemPy and, again via discretize, move it to
emg3d to compute CSEM responses for it.

Have a look at the gallery for many examples of how to use emg3d together with the mentioned projects and more!

5.1.4 Tips and Tricks

The function emg3d.solver.solve() is the main entry point, and it takes care whether multigrid is used as a
solver or as a preconditioner (or not at all), while the actual multigrid solver is emg3d.solver.multigrid().
Most input parameters for emg3d.solver.solve() are sufficiently described in its docstring. Here a few
additional information.

• You can input any three-dimensional tensor mesh into emg3d. However, the implemented multigrid tech-
nique works with the existing nodes, meaning there are no new nodes created as coarsening is done by
combining adjacent cells. The more times the grid dimension can be divided by two the better it is suited
for MG. Ideally, the number should be dividable by two a few times and the dimension of the coarsest grid
should be a low prime number 𝑝, for which good sizes can then be computed with 𝑝2𝑛. Good grid sizes (in
each direction) up to 1024 are

– 223,4,...,9: 16, 32, 64, 128, 256, 512, 1024,

– 323,4,...,8: 24, 48, 96, 192, 384, 768,

– 523,4,...,7: 40, 80, 160, 320, 640,

5.1. Getting started 13
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– 723,4,...,7: 56, 112, 224, 448, 896,

and preference decreases from top to bottom row (stick to the first two or three rows if possible). Good grid
sizes in sequential order, excluding p=7: 16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 512,
640, 768, 1024. You can get this list via emg3d.meshes.good_mg_cell_nr().

• The multigrid method can be used as a solver or as a preconditioner, for instance for BiCGSTAB. Using
multigrid as a preconditioner for BiCGSTAB together with semicoarsening and line relaxation is the most
stable version, but expensive, and therefore only recommended on highly stretched grids. Which combina-
tion of solver is best (fastest) depends to a large extent on the grid stretching, but also on anisotropy and
general model complexity. See «Parameter tests» in the gallery for an example how to run some tests on
your particular problem.

5.1.5 Contributing and Roadmap

New contributions, bug reports, or any kind of feedback is always welcomed! Have a look at the Roadmap-project
to get an idea of things that could be implemented. The GitHub issues and PR’s are also a good starting point. The
best way for interaction is at https://github.com/empymod or by joining the Slack channel «em-x-d» of SimPEG.
If you prefer to get in touch outside of GitHub/Slack use the contact form on https://werthmuller.org.

To install emg3d from source, you can download the latest version from GitHub and install it in your python
distribution via:

python setup.py install

Please make sure your code follows the pep8-guidelines by using, for instance, the python module flake8, and
also that your code is covered with appropriate tests. Just get in touch if you have any doubts.

5.1.6 Tests and benchmarks

The modeller comes with a test suite using pytest. If you want to run the tests, just install pytest and run it
within the emg3d-top-directory.

> pytest --cov=emg3d --flake8

It should run all tests successfully. Please let us know if not!

Note that installations of em3gd via conda or pip do not have the test-suite included. To run the test-suite you
must download emg3d from GitHub.

There is also a benchmark suite using airspeed velocity, located in the empymod/emg3d-asv-repository.
The results of my machine can be found in the empymod/emg3d-bench, its rendered version at
empymod.github.io/emg3d-asv.

5.1.7 License

Copyright 2018-2020 The emg3d Developers.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
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5.2 Multi-what?

If you have never heard of the multigrid method before you might ask yourself “multi-what?” The following is an
intent to describe the multigrid method without the maths; just some keywords and some figures. It is a heavily
simplified intro, using a 2D grid for simplicity. Have a look at the Theory-section for more details. A good, four-
page intro with some maths is given by [Muld11]. More in-depth information can be found, e.g., in [BrHM00],
[Hack85], and [Wess91].

The multigrid method ([Fedo64])

• is an iterative solver;

• scales almost linearly (CPU & RAM);

• can serve as a pre-conditioner or as a solver on its own.

The main driving motivation to use multigrid is the part about linear scaling.

5.2.1 Matrix-free solver

The implemented multigrid method is a matrix free solver, it never constructs the full matrix. This is how it
achieves its relatively low memory consumption. To solve the system, it solves for all fields adjacent to one node,
moves then to the next node, and so on until it reaches the last node, see Figure 5.1, where the red lines indicate
the fields which are solved simultaneously per step (the fields on the boundaries are never computed, as they are
assumed to be 0).

Figure 5.1:: The multigrid solver solves by default on a node-by-node basis.

Normally, you would have to do this over and over again to achieve a good approximate solution. multigrid
typically does it only a few times per grid, typically 2 times (one forward, one backward). This is why it is called
smoother, as it only smoothes the error, it does not solve it. The implemented method for this is the Gauss-Seidel
method.

Iterative solver which work in this matrix-free manner are typically very fast at solving for the local problem,
hence at reducing the high frequency error, but very slow at solving the global problem, hence at reducing the
low frequency error. High and low frequency errors are meant relatively to cell-size here.

5.2.2 Moving between different grids

The main thinking behind multigrid is now that we move to coarser grids. This has two advantages:

• Fewer cells means faster computation and less memory.

• Coarser grid size transforms lower frequency error to higher frequency error, relatively to cell size, which
means faster convergence.

The implemented multigrid method simply joins two adjacent cells to get from finer to coarser grids, see Figure
5.2 for an example coarsening starting with a 16 cells by 16 cells grid.

Figure 5.2:: Example of the implemented coarsening scheme.

There are different approaches how to cycle through different grid sizes, see Figures 5.7 to 5.9. The downsampling
from a finer grid to a coarser grid is often termed restriction, whereas the interpolation from a coarser grid to a
finer grid is termed prolongation.

5.2. Multi-what? 15



emg3d Documentation, Release 0.14.3

5.2.3 Specialities

The convergence rate of the multigrid method suffers on severely stretched grids or by models with strong
anisotropy. Two techniques are implemented, semicoarsening (Figure 5.3) and line relaxation (Figure 5.4). Both
require more CPU and higher RAM per grid than the standard multigrid, but they can improve the convergence
rate, which then in turn improves the overall CPU time.

Figure 5.3:: Example of semicoarsening: The cell size is kept constant in one direction. The direction can be
alternated between iterations.

Figure 5.4:: Example of line relaxation: The system is solved for all fields adjacent to a whole line of nodes
simultaneously in some direction. The direction can be alternated between iterations.

5.3 Theory

The following provides an introduction to the theoretical foundation of the solver emg3d. More specific theory is
covered in the docstrings of many functions, have a look at the Other functions-section or follow the links to the
corresponding functions here within the theory. If you just want to use the solver, but do not care much about the
internal functionality, then the function emg3d.solver.solve() is the only function you will ever need. It
is the main entry point, and it takes care whether multigrid is used as a solver or as a preconditioner (or not at all),
while the actual multigrid solver is emg3d.solver.multigrid().

Note: This section is not an independent piece of work. Most things are taken from one of the following sources:

• [Muld06], pages 634-639:

– The Maxwell’s equations and Discretisation sections correspond with some adjustemens and additions
to pages 634-636.

– The start of The Multigrid Method corresponds roughly to page 637.

– Pages 638 and 639 are in parts reproduced in the code-docstrings of the corresponding functions.

• [BrHM00]: This book is an excellent introduction to multigrid methods. Particularly the Iterative Solvers
section is taken to a big extent from the book.

Please consult these original resources for more details, and refer to them for citation purposes and not to
this manual. More in-depth information can also be found in, e.g., [Hack85] and [Wess91].

5.3.1 Maxwell’s equations

Maxwell’s equations in the presence of a current source Js are

𝜕𝑡B(x, 𝑡) + ∇×E(x, 𝑡) = 0,

∇×H(x, 𝑡) − 𝜕𝑡D(x, 𝑡) = Jc(x, 𝑡) + Js(x, 𝑡),
(5.1)

where the conduction current Jc obeys Ohm’s law,

Jc(x, 𝑡) = 𝜎(x)E(x, 𝑡). (5.2)

Here, 𝜎(x) is the conductivity. E(x, 𝑡) is the electric field and H(x, 𝑡) is the magnetic field. The electric dis-
placement D(x, 𝑡) = 𝜀(x)E(x, 𝑡) and the magnetic induction B(x, 𝑡) = 𝜇(x)H(x, 𝑡). The dielectric constant
or permittivity 𝜀 can be expressed as 𝜀 = 𝜀𝑟𝜀0, where 𝜀𝑟 is the relative permittivity and 𝜀0 is the vacuum value.
Similarly, the magnetic permeability 𝜇 can be written as 𝜇 = 𝜇𝑟𝜇0, where 𝜇𝑟 is the relative permeability and 𝜇0

is the vacuum value.
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The magnetic field can be eliminated from Equation (5.1), yielding the second-order parabolic system of equations,

𝜀𝜕𝑡𝑡E + 𝜎𝜕𝑡E + ∇× 𝜇−1∇×E = −𝜕𝑡Js. (5.3)

To transform from the time domain to the frequency domain, we substitute

E(x, 𝑡) =
1

2𝜋

∫︁ ∞

−∞
Ê(x, 𝜔)𝑒−i𝜔𝑡 𝑑𝜔, (5.4)

and use a similar representation for H(x, 𝑡). The resulting system of equations is

−𝑠𝜇0(𝜎 + 𝑠𝜀)Ê−∇× 𝜇−1
𝑟 ∇× Ê = 𝑠𝜇0Ĵ𝑠, (5.5)

where 𝑠 = −i𝜔. The multigrid method converges in the case of the diffusive approximation (with its smoothing
and approximation properties), but not in the high-frequency range (at least not in the implemented form of the
multigrid method in emg3d). The code emg3d assumes therefore the diffusive approximation, hence only low
frequencies are considered that obey |𝜔𝜀| ≪ 𝜎. In this case we can set 𝜀 = 0, and Equation (5.5) simplifies to

−𝑠𝜇0𝜎Ê−∇× 𝜇−1
𝑟 ∇× Ê = 𝑠𝜇0Ĵ𝑠, (5.6)

From here on, the hats are omitted. We use the perfectly electrically conducting boundary

n×E = 0 and n ·H = 0, (5.7)

where n is the outward normal on the boundary of the domain.

The Maxwell’s equations and Ohm’s law are solved in the frequency domain. The time-domain solution can be
obtained by taking the inverse Fourier transform.

Note: [Muld06] uses the time convention 𝑒−i𝜔𝑡, see Equation (5.4), with 𝑠 = −i𝜔. However, the code emg3d
uses the convention 𝑒i𝜔𝑡, hence 𝑠 = i𝜔. This is the same convention as used in empymod, and commonly in
CSEM.

Laplace domain

It is also possible to solve the problem in the Laplace domain, by using a real value for 𝑠 in Equation (5.6), instead
of the complex value −i𝜔. This simplifies the problem from complex numbers to real numbers, which accelerates
the computation. It also improves the convergence rate, as the solution is a smoother function. The solver emg3d.
solver.solve() is agnostic to the data type of the provided source field, and can solve for real and complex
problems, hence frequency and Laplace domain. See the documentation of the functions emg3d.fields.
get_source_field() and emg3d.models.Model() to see how you can use emg3d for Laplace-domain
computations.

5.3.2 Discretisation

Equation (5.6) can be discretised by the finite-integration technique ([Weil77], [ClWe01]). This scheme can be
viewed as a finite-volume generalization of [Yee66]’s scheme for tensor-product Cartesian grids with variable
grid spacings. An error analysis for the constant-coefficient case ([MoSu94]) showed that both the electric and
magnetic field components have second-order accuracy.

Consider a tensor-product Cartesian grid with nodes at positions (𝑥𝑘, 𝑦𝑙, 𝑧𝑚), where 𝑘 = 0, . . . , 𝑁𝑥, 𝑙 = 0, . . . , 𝑁𝑦

and 𝑚 = 0, . . . , 𝑁𝑧 . There are 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 cells having these nodes as vertices. The cell centres are located at

𝑥𝑘+1/2 = 1
2 (𝑥𝑘 + 𝑥𝑘+1) ,

𝑦𝑙+1/2 = 1
2 (𝑦𝑙 + 𝑦𝑙+1) ,

𝑧𝑚+1/2 = 1
2 (𝑧𝑚 + 𝑧𝑚+1) .

(5.8)
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The material properties, 𝜎 and 𝜇r, are assumed to be given as cell-averaged values. The electric field components
are positioned at the edges of the cells, as shown in Figure 5.5, in a manner similar to Yee’s scheme. The first
component of the electric field 𝐸1,𝑘+1/2,𝑙,𝑚 should approximate the average of 𝐸1(𝑥, 𝑦𝑙, 𝑧𝑚) over the edge from
𝑥𝑘 to 𝑥𝑘+1 at given 𝑦𝑙 and 𝑧𝑚. Here, the average is defined as the line integral divided by the length of the
integration interval. The other components, 𝐸2,𝑘,𝑙+1/2,𝑚 and 𝐸3,𝑘,𝑙,𝑚+1/2, are defined in a similar way. Note that
these averages may also be interpreted as point values at the midpoint of edges:

𝐸1,𝑘+1/2,𝑙,𝑚 ≃ 𝐸1

(︀
𝑥𝑘+1/2, 𝑦𝑙, 𝑧𝑚

)︀
,

𝐸2,𝑘,𝑙+1/2,𝑚 ≃ 𝐸2

(︀
𝑥𝑘, 𝑦𝑙+1/2, 𝑧𝑚

)︀
,

𝐸3,𝑘,𝑙,𝑚+1/2 ≃ 𝐸3

(︀
𝑥𝑘, 𝑦𝑙, 𝑧𝑚+1/2

)︀
.

(5.9)

The averages and point-values are the same within second-order accuracy.

Figure 5.5:: (a) A grid cell with grid nodes and edge-averaged components of the electric field. (b) The face-
averaged magnetic field components that are obtained by taking the curl of the electric field.

For the discretisation of the term −𝑠𝜇0𝜎E related to Ohm’s law, dual volumes related to edges are introduced.
For a given edge, the dual volume is a quarter of the total volume of the four adjacent cells. An example for 𝐸1 is
shown in Figure 5.6(b). The vertices of the dual cell are located at the midpoints of the cell faces.

The volume of a normal cell is defined as

𝑉𝑘+1/2,𝑙+1/2,𝑚+1/2 = ℎ𝑥
𝑘+1/2ℎ

𝑦
𝑙+1/2ℎ

𝑧
𝑚+1/2, (5.10)
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Figure 5.6:: The first electric field component 𝐸1,𝑘,𝑙,𝑚 is located at the intersection of the four cells shown in (a).
Four faces of its dual volume are sketched in (b). The first component of the curl of the magnetic field should
coincide with the edge on which 𝐸1 is located. The four vectors that contribute to this curl are shown in (a).
They are defined as normals to the four faces in (a). Before computing their curl, these vectors are interpreted
as tangential components at the faces of the dual volume shown in (b). The curl is evaluated by taking the path
integral over a rectangle of the dual volume that is obtained for constant x and by averaging over the interval
[𝑥𝑘, 𝑥𝑘+1].
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where
ℎ𝑥
𝑘+1/2 = 𝑥𝑘+1 − 𝑥𝑘,

ℎ𝑦
𝑙+1/2 = 𝑦𝑙+1 − 𝑦𝑙,

ℎ𝑧
𝑚+1/2 = 𝑧𝑚+1 − 𝑧𝑚.

(5.11)

For an edge parallel to the x-axis on which 𝐸1,𝑘+1/2,𝑙,𝑚 is located, the dual volume is

𝑉𝑘+1/2,𝑙,𝑚 = 1
4ℎ

𝑥
𝑘+1/2

1∑︁
𝑚2=0

1∑︁
𝑚3=0

ℎ𝑦
𝑙−1/2+𝑚2

ℎ𝑧
𝑚−1/2+𝑚3

. (5.12)

With the definitions,

𝑑𝑥𝑘 = 𝑥𝑘+1/2 − 𝑥𝑘−1/2,

𝑑𝑦𝑙 = 𝑦𝑙+1/2 − 𝑦𝑙−1/2,

𝑑𝑧𝑚 = 𝑧𝑚+1/2 − 𝑧𝑚−1/2,

(5.13)

we obtain
𝑉𝑘+1/2,𝑙,𝑚 = ℎ𝑥

𝑘+1/2𝑑
𝑦
𝑙 𝑑

𝑧
𝑚,

𝑉𝑘,𝑙+1/2,𝑚 = 𝑑𝑥𝑘ℎ
𝑦
𝑙+1/2𝑑

𝑧
𝑚,

𝑉𝑘,𝑙,𝑚+1/2 = 𝑑𝑥𝑘𝑑
𝑦
𝑙 ℎ

𝑧
𝑚+1/2.

(5.14)

Note that Equation (5.13) does not define 𝑑𝑥𝑘 , etc., at the boundaries. We may simply take 𝑑𝑥0 = ℎ𝑥
1/2 at 𝑘 = 0,

𝑑𝑥𝑁𝑥
= ℎ𝑥

𝑁𝑥−1/2 at 𝑘 = 𝑁𝑥 and so on, or use half of these values as was done by [MoSu94].

The discrete form of the term −𝑠𝜇0𝜎E in Equation (5.6), with each component multiplied by the corresponding
dual volume, becomes 𝒮𝑘+1/2,𝑙,𝑚 𝐸1,𝑘+1/2,𝑙,𝑚, 𝒮𝑘,𝑙+1/2,𝑚 𝐸2,𝑘,𝑙+1/2,𝑚 and 𝒮𝑘,𝑙,𝑚+1/2 𝐸3,𝑘,𝑙,𝑚+1/2 for the first,
second and third components, respectively. Here 𝒮 = −𝑠𝜇0𝜎𝑉 is defined in terms of cell-averages. At the edges
parallel to the x-axis, an averaging procedure similar to (5.12) gives

𝒮𝑘+1/2,𝑙,𝑚 = 1
4

(︀
𝒮𝑘+1/2,𝑙−1/2,𝑚−1/2 + 𝒮𝑘+1/2,𝑙+1/2,𝑚−1/2

+ 𝒮𝑘+1/2,𝑙−1/2,𝑚+1/2 + 𝒮𝑘+1/2,𝑙+1/2,𝑚+1/2

)︀
.

(5.15)

𝒮𝑘,𝑙+1/2,𝑚 and 𝒮𝑘,𝑙,𝑚+1/2 are defined in a similar way.

The curl of E follows from path integrals around the edges that bound a face of a cell, drawn in Figure 5.5(a).
After division by the area of the faces, the result is a face-averaged value that can be positioned at the centre of
the face, as sketched in Figure 5.5(b). If this result is divided by i𝜔𝜇, the component of the magnetic field that is
normal to the face is obtained. In order to find the curl of the magnetic field, the magnetic field components that
are normal to faces are interpreted as tangential components at the faces of the dual volumes. For 𝐸1, this is shown
in Figure 5.6. For the first component of Equation (5.6) on the edge (𝑘 + 1/2, 𝑙,𝑚) connecting (𝑥𝑘, 𝑦𝑙, 𝑧𝑚) and
(𝑥𝑘+1, 𝑦𝑙, 𝑧𝑚), the corresponding dual volume comprises the set [𝑥𝑘, 𝑥𝑘+1]× [𝑦𝑙−1/2, 𝑦𝑙+1/2]× [𝑧𝑚−1/2, 𝑧𝑚+1/2]
having volume 𝑉𝑘+1/2,𝑙,𝑚.

The scaling by 𝜇−1
𝑟 at the face requires another averaging step because the material properties are assumed to be

given as cell-averaged values. We define ℳ = 𝑉 𝜇−1
𝑟 , so

ℳ𝑘+1/2,𝑙+1/2,𝑚+1/2 = ℎ𝑥
𝑘+1/2ℎ

𝑦
𝑙+1/2ℎ

𝑧
𝑚+1/2𝜇

−1
𝑟,𝑘+1/2,𝑙+1/2,𝑚+1/2 (5.16)

for a given cell (𝑘 + 1/2, 𝑙 + 1/2,𝑚 + 1/2). An averaging step in, for instance, the z-direction gives

ℳ𝑘+1/2,𝑙+1/2,𝑚 = 1
2

(︀
ℳ𝑘+1/2,𝑙+1/2,𝑚−1/2 + ℳ𝑘+1/2,𝑙+1/2,𝑚+1/2

)︀
(5.17)

at the face (𝑘 + 1/2, 𝑙 + 1/2,𝑚) between the cells (𝑘 + 1/2, 𝑙 + 1/2,𝑚− 1/2) and (𝑘 + 1/2, 𝑙 + 1/2,𝑚+ 1/2).

Starting with v = ∇×E, we have

𝑣1,𝑘,𝑙+1/2,𝑚+1/2 = 𝑒𝑦𝑙+1/2

(︀
𝐸3,𝑘,𝑙+1,𝑚+1/2 − 𝐸3,𝑘,𝑙,𝑚+1/2

)︀
− 𝑒𝑧𝑚+1/2

(︀
𝐸2,𝑘,𝑙+1/2,𝑚+1 − 𝐸2,𝑘,𝑙+1/2,𝑚

)︀
,

𝑣2,𝑘+1/2,𝑙,𝑚+1/2 = 𝑒𝑧𝑚+1/2

(︀
𝐸1,𝑘+1/2,𝑙,𝑚+1 − 𝐸1,𝑘+1/2,𝑙,𝑚

)︀
− 𝑒𝑥𝑘+1/2

(︀
𝐸3,𝑘+1,𝑙,𝑚+1/2 − 𝐸3,𝑘,𝑙,𝑚+1/2

)︀
,

𝑣3,𝑘+1/2,𝑙+1/2,𝑚 = 𝑒𝑥𝑘+1/2

(︀
𝐸2,𝑘+1/2,𝑙+1,𝑚 − 𝐸1,𝑘+1/2,𝑙,𝑚

)︀
− 𝑒𝑦𝑙+1/2

(︀
𝐸1,𝑘+1/2,𝑙+1,𝑚 − 𝐸1,𝑘+1/2,𝑙,𝑚

)︀
.

(5.18)
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Here,

𝑒𝑥𝑘+1/2 = 1/ℎ𝑥
𝑘+1/2, 𝑒𝑦𝑙+1/2 = 1/ℎ𝑦

𝑙+1/2, 𝑒𝑧𝑚+1/2 = 1/ℎ𝑧
𝑚+1/2. (5.19)

Next, we let

𝑢1,𝑘,𝑙+1/2,𝑚+1/2 = ℳ𝑘,𝑙+1/2,𝑚+1/2𝑣1,𝑘,𝑙+1/2,𝑚+1/2,

𝑢2,𝑘+1/2,𝑙,𝑚+1/2 = ℳ𝑘+1/2,𝑙,𝑚+1/2𝑣2,𝑘+1/2,𝑙+1/2,𝑚,

𝑢3,𝑘+1/2,𝑙+1/2,𝑚 = ℳ𝑘+1/2,𝑙+1/2,𝑚𝑣3,𝑘+1/2,𝑙+1/2,𝑚.

(5.20)

Note that these components are related to the magnetic field components by

𝑢1,𝑘,𝑙+1/2,𝑚+1/2 = i𝜔𝜇0𝑉𝑘,𝑙+1/2,𝑚+1/2𝐻1,𝑘+1/2,𝑙,𝑚+1/2,

𝑢2,𝑘+1/2,𝑙,𝑚+1/2 = i𝜔𝜇0𝑉𝑘+1/2,𝑙,𝑚+1/2𝐻2,𝑘+1/2,𝑙,𝑚+1/2,

𝑢3,𝑘+1/2,𝑙+1/2,𝑚 = i𝜔𝜇0𝑉𝑘+1/2,𝑙+1/2,𝑚𝐻3,𝑘+1/2,𝑙+1/2,𝑚,

(5.21)

where

𝑉𝑘,𝑙+1/2,𝑚+1/2 = 𝑑𝑥𝑘ℎ
𝑦
𝑙+1/2ℎ

𝑧
𝑚+1/2,

𝑉𝑘+1/2,𝑙,𝑚+1/2 = ℎ𝑥
𝑘+1/2𝑑

𝑦
𝑙 ℎ

𝑧
𝑚+1/2,

𝑉𝑘+1/2,𝑙+1/2,𝑚 = ℎ𝑥
𝑘+1/2ℎ

𝑦
𝑙+1/2𝑑

𝑧
𝑚.

(5.22)

The discrete representation of the source term i𝜔𝜇0Js, multiplied by the appropriate dual volume, is

𝑠1,𝑘+1/2,𝑙,𝑚 = i𝜔𝜇0𝑉𝑘+1/2,𝑙,𝑚𝐽1,𝑘+1/2,𝑙,𝑚,

𝑠2,𝑘,𝑙+1/2,𝑚 = i𝜔𝜇0𝑉𝑘,𝑙+1/2,𝑚𝐽2,𝑘,𝑙+1/2,𝑚,

𝑠3,𝑘,𝑙,𝑚+1/2 = i𝜔𝜇0𝑉𝑘,𝑙,𝑚+1/2𝐽3,𝑘,𝑙,𝑚+1/2.

(5.23)

Let the residual for an arbitrary electric field that is not necessarily a solution to the problem be defined as

r = 𝑉
(︀
i𝜔𝜇0Js + −𝑠𝜇0𝜎E−∇× 𝜇−1

r ∇×E
)︀
. (5.24)

Its discretisation is

𝑟1,𝑘+1/2,𝑙,𝑚 = 𝑠1,𝑘+1/2,𝑙,𝑚 + 𝒮𝑘+1/2,𝑙,𝑚𝐸1,𝑘+1/2,𝑙,𝑚

−
[︁
𝑒𝑦𝑙+1/2𝑢3,𝑘+1/2,𝑙+1/2,𝑚 − 𝑒𝑦𝑙−1/2𝑢3,𝑘+1/2,𝑙−1/2,𝑚]

+
[︁
𝑒𝑧𝑚+1/2𝑢2,𝑘+1/2,𝑙,𝑚+1/2 − 𝑒𝑧𝑚−1/2𝑢2,𝑘+1/2,𝑙,𝑚−1/2

]︁
,

𝑟2,𝑘,𝑙+1/2,𝑚 = 𝑠2,𝑘,𝑙+1/2,𝑚 + 𝒮𝑘,𝑙+1/2,𝑚𝐸2,𝑘,𝑙+1/2,𝑚

−
[︁
𝑒𝑧𝑚+1/2𝑢1,𝑘,𝑙+1/2,𝑚+1/2 − 𝑒𝑧𝑚−1/2𝑢1,𝑘,𝑙+1/2,𝑚−1/2]

+
[︁
𝑒𝑥𝑘+1/2𝑢3,𝑘+1/2,𝑙+1/2,𝑚 − 𝑒𝑥𝑘−1/2𝑢3,𝑘−1/2,𝑙+1/2,𝑚]

]︁
,

𝑟3,𝑘,𝑙,𝑚+1/2 = 𝑠3,𝑘,𝑙,𝑚+1/2 + 𝒮𝑘,𝑙,𝑚+1/2𝐸3,𝑘,𝑙,𝑚+1/2

−
[︁
𝑒𝑥𝑘+1/2𝑢2,𝑘+1/2,𝑙,𝑚+1/2 − 𝑒𝑥𝑘−1/2𝑢2,𝑘−1/2,𝑚+1/2]

+
[︁
𝑒𝑦𝑙+1/2𝑢1,𝑘,𝑙+1/2,𝑚+1/2 − 𝑒𝑦𝑙−1/2𝑢1,𝑘,𝑙−1/2,𝑚+1/2

]︁
.

(5.25)

The weighting of the differences in 𝑢1, etc., may appear strange. The reason is that the differences have been
multiplied by the local dual volume. As already mentioned, the dual volume for 𝐸1,𝑘,𝑙,𝑚 is shown in Figure
5.6(b).

For further details of the discretisation see [Muld06] or [Yee66]. The actual meshing is done using discretize (part
of the SimPEG-framework). The coordinate system of discretize uses a coordinate system were positive z is
upwards.

The method is implemented in a matrix-free manner: the large sparse linear matrix that describes the discretised
problem is never explicitly formed, only its action is evaluated on the latest estimate of the solution, thereby
reducing storage requirements.
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5.3.3 Iterative Solvers

The multigrid method is an iterative (or relaxation) method and shares as such the underlying idea of iterative
solvers. We want to solve the linear equation system

𝐴x = b, (5.26)

where 𝐴 is the 𝑛 × 𝑛 system matrix and 𝑥 the unknown. If 𝑣 is an approximation to 𝑥, then we can define two
important measures. One is the error 𝑒

e = x− v, (5.27)

which magnitude can be measured by any standard vector norm, for instance the maximum norm and the Euclidean
or 2-norm defined respectively, by

‖e‖∞ = max
1≤𝑗≤𝑛

|𝑒𝑗 | and ‖e‖2 =

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

𝑒2𝑗 .

However, as the solution is not known the error cannot be computed either. The second important measure,
however, is a computable measure, the residual 𝑟 (computed in emg3d.solver.residual())

r = b−𝐴v. (5.28)

Using Equation (5.27) we can rewrite Equation (5.26) as

𝐴e = b−𝐴v,

from which we obtain with Equation (5.28) the Residual Equation

𝐴e = r. (5.29)

The Residual Correction is given by

x = v + e. (5.30)

5.3.4 The Multigrid Method

Note: If you have never heard of multigrid methods before you might want to read through the Multi-what?-
section.

Multigrid is a numerical technique for solving large, often sparse, systems of equations, using several grids at the
same time. An elementary introduction can be found in [BrHM00]. The motivation for this approach follows
from the observation that it is fairly easy to determine the local, short-range behaviour of the solution, but more
difficult to find its global, long-range components. The local behaviour is characterized by oscillatory or rough
components of the solution. The slowly varying smooth components can be accurately represented on a coarser
grid with fewer points. On coarser grids, some of the smooth components become oscillatory and again can be
easily determined.

The following constituents are required to carry out multigrid. First, a sequence of grids is needed. If the finest
grid on which the solution is to be found has a constant grid spacing ℎ, then it is natural to define coarser grids
with spacings of 2ℎ, 4ℎ, etc. Let the problem on the finest grid be defined by 𝐴ℎxℎ = bℎ. The residual is
rℎ = bℎ − 𝐴ℎxℎ (see the corresponding function emg3d.solver.residual(), and for more details also
the function emg3d.core.amat_x()). To find the oscillatory components for this problem, a smoother or
relaxation scheme is applied. Such a scheme is usually based on an approximation of 𝐴ℎ that is easy to invert.
After one or more smoothing steps (see the corresponding function emg3d.solver.smoothing()), say 𝜈1
in total, convergence will slow down because it is generally difficult to find the smooth, long-range components
of the solution. At this point, the problem is mapped to a coarser grid, using a restriction operator 𝐼2ℎℎ (see
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the corresponding function emg3d.solver.restriction(), and for more details, the functions emg3d.
core.restrict_weights() and emg3d.core.restrict(). On the coarse-grid, b2ℎ = 𝐼2ℎℎ rℎ. The
problem r2ℎ = b2ℎ −𝐴2ℎx2ℎ = 0 is now solved for x2ℎ, either by a direct method if the number of points is suf-
ficiently small or by recursively applying multigrid. The resulting approximate solution needs to be interpolated
back to the fine grid and added to the solution. An interpolation operator 𝐼ℎ2ℎ, usually called prolongation in the
context of multigrid, is used to update xℎ := xℎ + 𝐼ℎ2ℎx

2ℎ (see the corresponding function emg3d.solver.
prolongation()). Here 𝐼ℎ2ℎx

2ℎ is called the coarse-grid correction. After prolongation, 𝜈2 additional smooth-
ing steps can be applied. This constitutes one multigrid iteration.

So far, we have not specified the coarse-grid operator 𝐴2ℎ. It can be formed by using the same discretisation
scheme as that applied on the fine grid. Another popular choice, 𝐴2ℎ = 𝐼2ℎℎ 𝐴ℎ𝐼ℎ2ℎ, has not been considered here.
Note that the tilde is used to distinguish restriction of the residual from operations on the solution, because these
act on elements of different function spaces.

If multigrid is applied recursively, a strategy is required for moving through the various grids. The simplest
approach is the V-cycle shown in Figure 5.7 for the case of four grids. Here, the same number of pre- and post-
smoothing steps is used on each grid, except perhaps on the coarsest. In many cases, the V-cycle does not solve
the coarse-grid equations sufficiently well. The W-cycle, shown in Figure 5.8, will perform better in that case.
In a W-cycle, the number of coarse-grid corrections is doubled on subsequent coarser grids, starting with one
coarse-grid correction on the finest grid. Because of its cost, it is often replaced by the F-cycle (Figure 5.9). In the
F-cycle, the number of coarse-grid corrections increases by one on each subsequent coarser grid.

Figure 5.7:: V-cycle with 𝜈1 pre-smoothing steps and 𝜈2 post-smoothing steps. On the coarsest grid, 𝜈𝑐 smoothing
steps are applied or an exact solver is used. The finest grid has a grid spacing ℎ and the coarsest 8ℎ. A single
coarse-grid correction is computed for all grids but the coarsest.

Figure 5.8:: W-cycle with 𝜈1 pre-smoothing steps and 𝜈2 post-smoothing steps. On each grid except the coarsest,
the number of coarse-grid corrections is twice that of the underlying finer grid.

One reason why multigrid methods may fail to reach convergence is strong anisotropy in the coefficients of the
governing partial differential equation or severely stretched grids (which has the same effect as anisotropy). In
that case, more sophisticated smoothers or coarsening strategies may be required. Two strategies are currently
implemented, semicoarsening and line relaxation, which can be used on their own or combined. Semicoarsening
is when the grid is only coarsened in some directions. Line relaxation is when in some directions the whole
gridlines of values are found simultaneously. If slow convergence is caused by just a few components of the
solution, a Krylov subspace method can be used to remove them. In this way, multigrid is accelerated by a Krylov
method. Alternatively, multigrid might be viewed as a preconditioner for a Krylov method.
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Figure 5.9:: F-cycle with 𝜈1 pre-smoothing steps and 𝜈2 post-smoothing steps. On each grid except the coarsest,
the number of coarse-grid corrections increases by one compared to the underlying finer grid.

Gauss-Seidel

The smoother implemented in emg3d is a Gauss-Seidel smoother. The Gauss-Seidel method solves the linear
equation system 𝐴x = b iteratively using the following method:

x(𝑘+1) = 𝐿−1
*

(︁
b− 𝑈x(𝑘)

)︁
, (5.31)

where 𝐿* is the lower triangular component, and 𝑈 the strictly upper triangular component, 𝐴 = 𝐿* + 𝑈 . On the
coarsest grid it acts as direct solver, whereas on the finer grid it acts as a smoother with only few iterations.

See the function emg3d.solver.smoothing(), and for more details, the functions emg3d.
core.gauss_seidel(), emg3d.core.gauss_seidel_x(), emg3d.core.gauss_seidel_y(),
emg3d.core.gauss_seidel_z(), and also emg3d.core.blocks_to_amat().

Choleski factorisation

The actual solver of the system 𝐴x = b is a non-standard Cholesky factorisation without pivoting for a symmetric,
complex matrix 𝐴 tailored to the problem of the multigrid solver, using only the main diagonal and five lower off-
diagonals of the banded matrix 𝐴. The result is the same as simply using, e.g., numpy.linalg.solve(), but
faster for the particular use-case of this code.

See emg3d.core.solve() for more details.

5.4 CPU & RAM

The multigrid method is attractive because it shows optimal scaling for both runtime and memory consumption.
In the following are a few notes regarding memory and runtime requirements. It also contains information about
what has been tried and what still could be tried in order to improve the current code.

5.4.1 Runtime

The gallery contains a script to do some testing with regards to runtime, see the Tools Section. An example output
of that script is shown in Figure 5.10.

Figure 5.10:: Runtime as a function of cell size, which shows nicely the linear scaling of multigrid solvers (using
a single thread).

The costliest functions (for big models) are:

• >90 %: emg3d.solver.smoothing() (emg3d.core.gauss_seidel())

• <5 % each, in decreasing importance:
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– emg3d.solver.prolongation() (emg3d.solver.RegularGridProlongator)

– emg3d.solver.residual() (emg3d.core.amat_x())

– emg3d.solver.restriction()

Example with 262,144 / 2,097,152 cells (nu_{i,1,c,2}=0,2,1,2; sslsolver=False;
semicoarsening=True; linerelaxation=True):

• 93.7 / 95.8 % smoothing

• 3.6 / 2.0 % prolongation

• 1.9 / 1.9 % residual

• 0.6 / 0.4 % restriction

The rest can be ignored. For small models, the percentage of smoothing goes down and of prolongation
and restriction go up. But then the modeller is fast anyway.

emg3d.core.gauss_seidel() and emg3d.core.amat_x() are written in numba; jitting emg3d.
solver.RegularGridProlongator turned out to not improve things, and many functions used in the
restriction are jitted too. The costliest functions (RAM- and CPU-wise) are therefore already written in numba.

Any serious attempt to improve the speed will have to tackle the smoothing itself.

Things which could be tried

• Not much has been tested with the numba-options parallel; prange; and nogil.

• There might be an additional gain by making emg3d.meshes.TensorMesh, emg3d.models.
Model, and emg3d.fields.Field instances jitted classes.

Things which have been tried

• One important aspect of the smoothing part is the memory layout. emg3d.core.gauss_seidel() and
emg3d.core.gauss_seidel_x() are ideal for F-arrays (loop z-y-x, hence slowest to fastest axis).
emg3d.core.gauss_seidel_y() and emg3d.core.gauss_seidel_z(), however, would be
optimal for C-arrays. But copying the arrays to C-order and afterwards back is costlier in most cases for
both CPU and RAM. The one possible and therefore implemented solution was to swap the loop-order in
emg3d.core.gauss_seidel_y().

• Restriction and prolongation information could be saved in a dictionary instead of recomputing it every
time. Turns out to be not worth the trouble.

• Rewrite emg3d.RegularGridInterpolator as jitted function, but the iterator approach seems to be
better for large grids.

5.4.2 Memory

Most of the memory requirement comes from storing the data itself, mainly the fields (source field, electric field,
and residual field) and the model parameters (resistivity, eta, mu). For a big model, they some up; e.g., almost 3
GB for an isotropic model with 256x256x256 cells.

The gallery contains a script to do some testing with regards to the RAM usage, see the Tools Section. An example
output of that script is shown in Figure 5.11.

Figure 5.11:: RAM usage, showing the optimal behaviour of multigrid methods. “Data RAM” is the memory
required by the fields (source field, electric field, residual field) and by the model parameters (resistivity; and eta,
mu). “MG Base” is for solving one Gauss-Seidel iteration on the original grid. “MG full RAM” is for solving one
multigrid F-Cycle.

The theory of multigrid says that in an ideal scenario, multigrid requires 8/7 (a bit over 1.14) the memory require-
ment of carrying out one Gauss-Seidel step on the finest grid. As can be seen in the figure, for models up to 2
million cells that holds pretty much, afterwards it becomes a bit worse.
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However, for this estimation one has to run the model first. Another way to estimate the requirement is by starting
from the RAM used to store the fields and parameters. As can be seen in the figure, for big models one is on the
save side estimating the required RAM as 1.35 times the storage required for the fields and model parameters.

The figure also shows nicely the linear behaviour of multigrid; for twice the number of cells twice the memory is
required (from a certain size onwards).

Attempts at improving memory usage should focus on the difference between the red line (actual usage)
and the dashed black line (1.14 x base usage).

5.5 CLI interface

Command-line interface for certain specific tasks, such as forward modelling and gradient computation of the
misfit function. The command is emg3d, consult the inbuilt help to get started:

emg3d --help

The CLI is driven by command-line parameters and a configuration file. The default configuration file is emg3d.
cfg, but another name can be provided as first positional argument to emg3d. Note that arguments provided in
the command line overwrite the settings in the configuration file.

5.5.1 Format of the config file

The shown values are the defaults. All values are commented out in this example; remove the comment signs to
use them.

# Files
# -----
# If the files are provided without ending the suffix `.h5` will be appended.
# The log has the same name as `output`, but with the suffix `.log`.
[files]
# path = . # Path (absolute or relative) to the data
# survey = survey.h5 # Also via `--survey`
# model = model.h5 # Also via `--model`
# output = emg3d_out.h5 # Also via `--output`
# store_simulation = False # Stores entire simulation in output if True

# Simulation parameters
# ---------------------
# Input parameters for the `Simulation` class, except for `solver_opts`
# (defined in their own section), but including the parameter `min_offset`
# for `compute()`.
[simulation]
# max_workers = 4 # Also via `-n` or `--nproc`.
# gridding = single # One grid for all sources and frequencies.
# min_offset = 0.0 # Only relevant if `observed=True` (r<r_min set to NaN).

# Solver options
# --------------
# Input parameters for the solver.
# See https://emg3d.readthedocs.io/en/stable/api/emg3d.solver.solve.html
# for a list of all parameters. The only parameters that cannot be provided
# here are grid, model, sfield, efield, and return_info.
#
# Note that currently sslsolver, semicoarsening, and linerelaxation only
# accept True/False through the CLI.
[solver_opts]
# sslsolver = True
# semicoarsening = True

(continues on next page)
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(continued from previous page)

# linerelaxation = True
# verb = 0

# Gridding options
# ----------------
# Input parameters for the automatic gridding.
# See the description of `gridding_opts` and link therein in
# https://emg3d.readthedocs.io/en/stable/api/emg3d.simulations.Simulation.html
# for more details.
#
# List of lists: lists are comma-separated values, lists are separated by
# semi-colons.
#
# One of the limitation of the CLI is that `vector` has to be a string.
[gridding_opts]
# properties = # list, e.g.: 0.3, 1, 1e5
# center = # list, e.g.: 0, 0, 0
# cell_number = # list, e.g.: 8, 16, 32, 64, 128
# min_width_pps = # list, e.g.: 5, 3, 3
# expand = # list, e.g.: 0.3, 1e8
# domain = # list of lists, e.g.: -10000, 10000; None; None
# stretching = # list of lists, e.g.: None; None; 1.05, 1.5
# min_width_limits = # list of lists, e.g.: 10, 100; None; 50
# mapping = # string, e.g.: Resistivity
# vector = # string, e.g.: xy
# frequency = # float, e.g.: 1.0
# seasurface = # float, e.g.: 0.0
# max_buffer = # float, e.g.: 100000.0
# lambda_factor = # float, e.g.: 1.0
# verb = # int, e.g.: 0
# lambda_from_center = # bool, e.g.: False

# Data
# ----
# Select which sources, receivers, and frequencies of the survey are used. By
# default all data is used. These are comma-separated lists.
[data]
# sources = Tx02, Tx08, Tx14
# receivers = Rx01, Rx10
# frequencies = 0.5, 0.75

5.6 Gallery

The gallery with many examples can be found at empymod.github.io/emg3d-gallery.

5.7 References

5.8 Credits

This project was started by Dieter Werthmüller. Every contributor will be listed here and is considered to be part
of «The emg3d Developers»:

• Dieter Werthmüller

Various bits got improved through discussions on Slack at SWUNG and at SimPEG, thanks to both communities.
Special thanks to @jokva (general), @banesullivan (visualization), @joferkington (interpolation), and @jcapriot
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(volume averaging).

5.8.1 Historical credits

The core of emg3d is a complete rewrite and redesign of the multigrid code by Wim A. Mulder ([Muld06],
[Muld07], [Muld08], [MuWS08]), developed at Shell and at TU Delft. Various authors contributed to the origi-
nal code, amongst others, Tom Jönsthövel ([JoOM06]; improved solver for strongly stretched grids), Marwan
Wirianto ([WiMS10], [WiMS11]; computation of time-domain data), and Evert C. Slob ([SlHM10]; analytical
solutions). The original code was written in Matlab, where the most time- and memory-consuming parts were
sped up through mex-files (written in C). It included multigrid with or without BiCGSTAB, VTI resistivity, semi-
coarsening, and line relaxation; the number of cells had to be powers of two, and coarsening was done only until
the first dimension was at two cells. As such it corresponded roughly to emg3d v0.3.0.

See the References in the manual for the full citations and a more extensive list.

Note: This software was initially (till 05/2021) developed at Delft University of Technology (https://www.tudelft.
nl) within the Gitaro.JIM project funded through MarTERA as part of Horizon 2020, a funding scheme of the
European Research Area (ERA-NET Cofund, https://www.martera.eu).

5.9 Changelog

5.9.1 recent versions

v0.14.3 : Bug fix

2020-11-19

• Bug fix for discretize>=0.6.0.

v0.14.2 : Bug fix

2020-11-18

• Bug fix for Windows affecting good_mg_cell_nr (int32 issue).

v0.14.1 : Bug fix

2020-11-14

• Fix for h5py>=3.0.

• Improved docs re automatic gridding.

v0.14.0 : Automatic gridding

2020-11-07

The simulation class comes new with an automatic gridding functionality, which should make it much easier to
compute CSEM data. With that the entire optimization routine was improved too. See the API docs for more info
of the relevant implementation.

• simulation:

– Simulation: New gridding options 'single', 'frequency' 'source', and 'both'; new
default is 'single'.
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– compute() takes a new argument, min_offset. If observed=True, it will add Gaussian ran-
dom noise according to the standard deviation of the data; it will set receivers responses below the
minimum offset to NaN.

– There is no longer a reference model.

– misfit and gradient can now handle observations with NaN’s.

• survey: A Survey has new attributes standard_error, noise_floor, and relative_error.

• optimize: Completely changed misfit and data-weighting to more sensible functions.

• cli:

– As a consequence of the changes the data_weight_opts got removed.

– New sections [data] to select the wanted data and [gridding_opts] for options of the auto-
matic gridding.

– Section [simulation] has a new parameter min_offset (for creating observed data).

– Output has a new parameter n_observations if misfit or gradient were called, which is the
number of observations that were used to compute the misfit.

• meshes:

– New functions construct_mesh, get_origin_widths, good_mg_cell_nr and other,
smaller helper routines.

– Deprecated the old meshing routines get_hx_h0, get_cell_numbers, get_stretched_h,
get_domain, get_hx; they will be removed in the future.

– Default of good_mg_cell_nr changed, and the documentation (and verbosity) with regards to
«good» number of cells was improved.

• Bug fixes:

– maps: Fixed the mapping of the gradients (Conductivity is the only mapping that was not affected
by this bug).

• Removed deprecated features:

– models.Model: Removed parameters res_{x;y;z}.

– io.save: Removed deprecated parameter backend.

– io.save: Removed default, file extension has to be provided.

v0.13.0 : CLI

2020-09-22

• New Module cli for command-line interaction:

The command-line interface can currently be used to forward model an entire Simulation, and also to
compute the misfit of it with respect to some data and the gradient of the misfit function. See the section
“CLI interface” in the documentation for more info.

Note that, while cli (v0.13.0) and optimize (v0.12.0) are implemented, they are still in development and are
likely going to change throughout the next two minor releases or so.

• Other changes:

– solver: Changes in verbosity for emg3d.solve:

* New default verbosity is 1 (only warnings; before it was 2).

* Verbosities {-1;0;1} remain unchanged.

* Verbosities {2;3;4} => {3;4;5}.
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* New verbosity 2: Only shows a one-liner at the end (plus warnings).

– survey and simulation: to_file and from_file have new a parameter name, to store and
load with a particular name instead of the default survey/simulation (useful when storing, e.g.,
many surveys in one file).

– survey: stores new also the reference-data; different data (observed, reference) is contained in a
data-dict when storing.

– simulation: takes new a verb parameter.

– optimize:

* Gradient now possible for arbitrarily rotated sources and receivers.

* Falls back to synthetic instead of observed now if reference not found.

– io: np.bool_ are converted back to bool when loading.

– Re-arrange, improve, and update documentation.

v0.12.0 : Survey & Simulation

2020-07-25

This is a big release with many new features, and unfortunately not completely backwards compatible. The
main new features are the new Survey and Simulation classes, as well as some initial work for optimization
(misfit, gradient). Also, a Model can now be a resistivity model, a conductivity model, or the logarithm (natural
or base 10) therefore. Receivers can now be arbitrarily rotated, just as the sources. In addition to the existing
soft-dependencies empymod, discretize, and h5py there are the new soft-dependencies xarray and tqm;
discretize is now much tighter integrated. For the new survey and simulation classes xarray is a required
dependency. However, the only hard dependency remain scipy and numba, if you use emg3d purely as a solver.
Data reading and writing has new a JSON-backend, in addition to the existing HDF5 and NumPy-backends.

In more detail:

• Modules:

– surveys (new; requires xarray):

* Class surveys.Survey, which combines sources, receivers, and data.

* Class surveys.Dipole, which defines electric or magnetic point dipoles and finite length
dipoles.

– simulations (new; requires xarray; soft-dependency tqdm):

* Class simulations.Simulation, which combines a survey with a model. A simulation
computes the e-field (and h-field) asynchronously using concurrent.futures. This class
will include automatic, source- and frequency-dependent gridding in the future. If tqdm is in-
stalled it displays a progress bar for the asynchronous computation. Note that the simulation class
has still some limitations, consult the class documentation.

– models:

* Model instances take new the parameters property_{x;y;z} instead of res_{x;y;z}.
The properties can be either resistivity, conductivity, or log_{e;10} thereof. What is actually
provided has to be defined with the parameter mapping. By default, it remains resistivity, as it
was until now. The keywords res_{x;y;z} are deprecated, but still accepted at the moment.
The attributes model.res_{x;y;z} are still available too, but equally deprecated. However,
it is no longer possible to assign values to these attributes, which is a backwards incompatible
change.

* A model knows now how to interpolate itself from its grid to another grid
(interpolate2grid).

– maps:
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* New mappings for models.Model instances: The mappings take care of how to transform the
investigation variable to conductivity and back, and how it affects its derivative.

* New interpolation routine edges2cellaverages.

– fields:

* Function get_receiver_response (new), which returns the response for arbitrarily rotated
receivers.

* Improvements to Field and SourceField:

· _sval and _smu0 not stored any longer, derived from _freq.

· SourceField is now using the copy() and from_dict() from its parents class
Field.

– io:

* File-format json (new), writes to a hierarchical, plain json file.

* Deprecated the use of backend, it uses the file extension of fname instead.

* This means .npz (instead of numpy), .h5 (instead of h5py), and new .json.

* New parameter collect_classes, which can be used to switch-on collection of the main
classes in root-level dictionaries. By default, they are no longer collected (changed).

– meshes:

* meshes.TensorMesh new inherits from discretize if installed.

* Added __eq__ to models.TensorMesh to compare meshes.

– optimize (new)

* Functionalities related to inversion (data misfit, gradient, data weighting, and depth weighting).
This module is in an early stage, and the API will likely change in the future. Current func-
tions are misfit, gradient (using the adjoint-state method), and data_weighting. These
functionalities are best accessed through the Simulation class.

• Dependencies:

– empymod is now a soft dependency (no longer a hard dependency), only required for utils.
Fourier (time-domain modelling).

– Existing soft dependency discretize is now baked straight into meshes.

– New soft dependency xarray for the Survey class (and therefore also for the Simulation class
and the optimize module).

– New soft dependency tqdm for nice progress bars in asynchronous computation.

• Deprecations and removals:

– Removed deprecated functions data_write and data_read.

– Removed all deprecated functions from utils.

• Miscellaneous:

– Re-organise API-docs.

– Much bookkeeping (improve error raising and checking; chaining errors, numpy types, etc).

v0.11.0 : Refactor

2020-05-05
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Grand refactor with new internal layout. Mainly splitting-up utils into smaller bits. Most functionalities (old
names) are currently retained in utils and it should be mostly backwards compatible for now, but they are
deprecated and will eventually be removed. Some previously deprecated functions were removed, however.

• Removed deprecated functions:

– emg3d.solver.solver (use emg3d.solver.solve instead).

– Aliases of emg3d.io.data_write and emg3d.io.data_read in emg3d.utils.

• Changes:

– SourceField has now the same signature as Field (this might break your code if you called
SourceField directly, with positional arguments, and not through get_source_field).

– More functions and classes in the top namespace.

– Replaced core.l2norm with scipy.linalg.norm, as SciPy 1.4 got the following PR: https:
//github.com/scipy/scipy/pull/10397 (reason to raise minimum SciPy to 1.4).

– Increased minimum required versions of dependencies to

* scipy>=1.4.0 (raised from 1.1, see note above)

* empymod>=2.0.0 (no min requirement before)

* numba>=0.45.0 (raised from 0.40)

• New layout

– njitted -> core.

– utils split in fields, meshes, models, maps, and utils.

• Bugfixes:

– Fixed to_dict, from_dict, and copy for the SourceField.

– Fixed io for SourceField, that was not implemented properly.

5.9.2 v0.8.0 - v0.10.x

v0.10.1 : Zero Source

2020-04-29

• Bug fixes:

– Checks now if provided source-field is zero, and exists gracefully if so, returning a zero electric field.
Until now it failed with a division-by-zero error.

• Improvements:

– Warnings: If verb=1 it prints a warning in case it did not converge (it finished silently until now).

– Improvements to docs (figures-scaling; intersphinx).

– Adjust Fields.pha and Fields.amp in accordance with empymod v2: .pha and .amp are
now methods; uses directly empymod.utils.EMArray.

– Adjust tests for empymod v2 (Fields, Fourier).

v0.10.0 : Data persistence

2020-03-25

• New:
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– New functions emg3d.save and emg3d.load to save and load all sort of emg3d instances. The
currently implemented backends are h5py for .h5-files (default, but requires h5py to be installed)
and numpy for .npz-files.

– Classes emg3d.utils.Field, emg3d.utils.Model, and emg3d.utils.TensorMesh
have new methods .copy(), .to_dict(), and .from_dict().

– emg3d.utils.Model: Possible to create new models by adding or subtracting existing models,
and comparing two models (+, -, == and !=). New attributes shape and size.

– emg3d.utils.Model does not store the volume any longer (just vnC).

• Deprecations:

– Deprecated data_write and data_read.

• Internal and bug fixes:

– All I/O-related stuff moved to its own file io.py.

– Change from NUMBA_DISABLE_JIT to use py_func for testing and coverage.

– Bugfix: emg3d.njitted.restrict did not store the {x;y;z}-field if sc_dir was {4;5;6}, re-
spectively.

v0.9.3 : Sphinx gallery

2020-02-11

• Rename solver.solver to solver.solve; load solve also into the main namespace as emg3d.
solve.

• Adjustment to termination criterion for STAGNATION: The current error is now compared to the last error
of the same cycle type. Together with this the workaround for sslsolver when called with an initial efield
introduced in v0.8.0 was removed.

• Adjustment to utils.get_hx_h0 (this might change your boundaries): The computation domain is now
computed so that the distance for the signal travelling from the source to the boundary and back to the most
remote receiver is at least two wavelengths away. If this is within the provided domain, then now extra
buffer is added around the domain. Additionally, the function has a new parameter max_domain, which
is the maximum distance from the center to the boundary; defaults to 100 km.

• New parameter log for utils.grid2grid; if True, then the interpolation is carried out on a log10-
scale.

• Change from the notebook-based emg3d-examples-repo to the sphinx-based emg3d-gallery-
repo.

v0.9.2 : Complex sources

2019-12-26

• Strength input for get_source_field can now be complex; it also stores now the source location and
its strength and moment.

• get_receiver can now take entire Field instances, and returns in that case (fx, fy, fz) at receiver
locations.

• Krylov subspace solvers:

– Solver now finishes in the middle of preconditioning cycles if tolerance is reached.

– Solver now aborts if solution diverges or stagnates also for the SSL solvers; it fails and returns a zero
field.

– Removed gmres and lgmres from the supported SSL solvers; they do not work nice for this prob-
lem. Supported remain bicgstab (default), cgs, and gcrotmk.
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• Various small things:

– New attribute Field.is_electric, so the field knows if it is electric or magnetic.

– New verb-possibility: verb=-1 is a continuously updated one-liner, ideal to monitor large sets of
computations or in inversions.

– The returned info dictionary contains new keys:

* runtime_at_cycle: accumulated total runtime at each cycle;

* error_at_cycle: absolute error at each cycle.

– Simple __repr__ for TensorMesh, Model, Fourier, Time.

• Bugfixes:

– Related to get_hx_h0, data_write, printing in Fourier.

v0.9.1 : VolumeModel

2019-11-13

• New class VolumeModel; changes in Model:

– Model now only contains resistivity, magnetic permeability, and electric permittivity.

– VolumeModel contains the volume-averaged values eta and zeta; called from within emg3d.
solver.solver.

– Full wave equation is enabled again, via epsilon_r; by default it is set to None, hence diffusive
approximation.

– Model parameters are now internally stored as 1D arrays.

– An {isotropic, VTI, HTI} initiated model can be changed by providing the missing resistivities.

• Bugfix: Up and till version 0.8.1 there was a bug. If resistivity was set with slices, e.g., model.res[:,
:, :5]=1e10, it DID NOT update the corresponding eta. This bug was unintentionally fixed in 0.9.0,
but only realised now.

• Various:

– The log now lists the version of emg3d.

– PEP8: internal imports now use absolute paths instead of relative ones.

– Move from conda-channel prisae to conda-forge.

– Automatic deploy for PyPi and conda-forge.

v0.9.0 : Fourier

2019-11-07

• New routine:

– emg3d.utils.Fourier, a class to handle Fourier-transform related stuff for time-domain mod-
elling. See the example notebooks for its usage.

• Utilities:

– Fields and returned receiver-arrays (EMArray) both have amplitude (.amp) and phase (.pha)
attributes.

– Fields have attributes containing frequency-information (freq, smu0).

– New class SourceField; a subclass of Field, adding vector and v{x,y,z} attributes for the
real valued source vectors.
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– The Model is not frequency-dependent any longer and does NOT take a freq-parameter any more
(currently it still takes it, but it is deprecated and will be removed in the future).

– data_write automatically removes _vol from TensorMesh instances and _eta_{x,y,z},
_zeta from Model instances. This makes the archives smaller, and they are not required, as they are
simply reconstructed if needed.

• Internal changes:

– The multigrid method, as implemented, only works for the diffusive approximation. Nevertheless,
we always used \sigma-i\omega\epsilon, hence a complex number. This is now changed and
\epsilon set to 0, leaving only \sigma.

– Change time convention from exp(-iwt) to exp(iwt), as used in empymod and commonly in
CSEM. Removed the parameter conjugate from the solver, to simplify.

– Change own private class variables from __ to _.

– res and mu_r are now checked to ensure they are >0; freq is checked to ensure !=0.

• New dependencies and maintenance:

– empymod is a new dependency.

– Travis now checks all the url’s in the documentation, so there should be no broken links down the
road. (Check is allowed to fail, it is visual QC.)

• Bugfixes:

– Fixes to the setuptools_scm-implementation (MANIFEST.in).

v0.8.1 : setuptools_scm

2019-10-22

• Implement setuptools_scm for versioning (adds git hashes for dev-versions).

v0.8.0 : Laplace

2019-10-04

• Laplace-domain computation: By providing a negative freq-value to utils.get_source_field
and utils.Model, the computation is carried out in the real Laplace domain s = freq instead of the
complex frequency domain s = 2i*pi*freq.

• New meshing helper routines (particularly useful for transient modelling where frequency-
dependent/adaptive meshes are inevitable):

– utils.get_hx_h0 to get cell widths and origin for given parameters including a few fixed inter-
faces (center plus two, e.g. top anomaly, sea-floor, and sea-surface).

– utils.get_cell_numbers to get good values of number of cells for given primes.

• Speed-up njitted.volume_average significantly thanks to @jcapriot.

• Bugfixes and other minor things:

– Abort if l2-norm is NaN (only works for MG).

– Workaround for the case where a sslsolver is used together with a provided initial efield.

– Changed parameter rho to res for consistency reasons in utils.get_domain.

– Changed parameter h_min to min_width for consistency reasons in utils.
get_stretched_h.
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5.9.3 v0.1.0 - v0.7.x

v0.7.1 : JOSS article

2019-07-17

• Version of the JOSS article, https://doi.org/10.21105/joss.01463 .

• New function utils.grid2grid to move from one grid to another. Both functions (utils.
get_receiver and utils.grid2grid) can be used for fields and model parameters (with or without
extrapolation). They are very similar, the former taking coordinates (x, y, z) as new points, the latter one
another TensorMesh instance.

• New jitted function njitted.volume_average for interpolation using the volume-average technique.

• New parameter conjugate in solver.solver to permit both Fourier transform conventions.

• Added exit_status and exit_message to info_dict.

• Add section Related ecosystem to documentation.

v0.7.0 : H-field

2019-07-05

• New routines:

– utils.get_h_field: Small routine to compute the magnetic field from the electric field using
Faraday’s law.

– utils.get_receiver: Small wrapper to interpolate a field at receiver positions. Added 3D spline
interpolation; is the new default.

• Re-implemented the possibility to define isotropic magnetic permeabilities in utils.Model. Magnetic
permeability is not tri-axially included in the solver currently; however, it would not be too difficult to
include if there is a need.

• CPU-graph added on top of RAM-graph.

• Expand utils.Field to work with pickle/shelve.

• Jit np.linalg.norm (njitted.l2norm).

• Use scooby (soft dependency) for versioning, rename Version to Report (backwards incompatible).

• Bug fixes:

– Small bugfix introduced in ebd2c9d5: sc_cycle and lr_cycle was not updated any longer at the
end of a cycle (only affected sslsolver=True.

– Small bugfix in utils.get_hx.

v0.6.2 : CPU & RAM

2019-06-03

Further speed and memory improvements:

• Add CPU & RAM-page to documentation.

• Change loop-order from x-z-y to z-x-y in Gauss-Seidel smoothing with line relaxation in y-direction. Hence
reversed lexicographical order. This results in a significant speed-up, as x is the fastest changing axis.

• Move total residual computation from solver.residual into njitted.amat_x.

• Simplifications in utils:

– Simplify utils.get_source_field.
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– Simplify utils.Model.

– Removed unused timing-stuff from early development.

v0.6.1 : Memory

2019-05-28

Memory and speed improvements:

• Only compute residual and l2-norm when absolutely necessary.

• Inplace computations for np.conjugate in solver.solver and np.subtract in solver.
residual.

v0.6.0 : RegularGridInterpolator

2019-05-26

• Replace scipy.interpolate.RegularGridInterpolator with a custom tailored version of it
(class:emg3d.solver.RegularGridProlongator); results in twice as fast prolongation.

• Simplify the fine-grid computation in prolongation without using gridE*; memory friendlier.

• Submission to JOSS.

• Add Multi-what?-page to documentation.

• Some major refactoring, particularly in solver.

• Removed discretize as hard dependency.

• Rename rdir and ldir (and related p*dir; *cycle) to the more descriptive sc_dir and lr_dir.

v0.5.0 : Accept any grid size

2019-05-01

• First open-source version.

• Include RTD, Travis, Coveralls, Codacy, and Zenodo. No benchmarks yet.

• Accepts now any grid size (warns if a bad grid size for MG is provided).

• Coarsens now to the lowest level of each dimension, not only to the coarsest level of the smallest dimension.

• Combined restrict_rx, restrict_ry, and restrict_rz to restrict.

• Improve speed by passing pre-allocated arrays to jitted functions.

• Store res_y, res_z and corresponding eta_y, eta_z only if res_y, res_z were provided in initial
call to utils.model.

• Change zeta to v_mu_r.

• Include rudimentary TensorMesh-class in utils; removes hard dependency on discretize.

• Bugfix: Take a provided efield into account; don’t return if provided.

v0.4.0 : Cholesky

2019-03-29

• Use solve_chol for everything, remove solve_zlin.

• Moved mesh.py and some functionalities from solver.py into utils.py.

5.9. Changelog 37

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator


emg3d Documentation, Release 0.14.3

• New mesh-tools. Should move to discretize eventually.

• Improved source generation tool. Might also move to discretize.

• printversion is now included in utils.

• Many bug fixes.

• Lots of improvements to tests.

• Lots of improvements to documentation. Amongst other, moved docs from __init__.py into the docs
rst.

v0.3.0 : Semicoarsening

2019-01-18

• Semicoarsening option.

• Number of cells must still be 2^n, but n can be different in the x-, y-, and z-directions.

• Many other iterative solvers from scipy.sparse.linalg can be used. It seems to work fine with the
following methods:

– scipy.sparse.linalg.bicgstab(): BIConjugate Gradient STABilize;

– scipy.sparse.linalg.cgs(): Conjugate Gradient Squared;

– scipy.sparse.linalg.gmres(): Generalized Minimal RESidual;

– scipy.sparse.linalg.lgmres(): Improvement of GMRES using alternating residual vec-
tors;

– scipy.sparse.linalg.gcrotmk(): GCROT: Generalized Conjugate Residual with inner Or-
thogonalization and Outer Truncation.

• The SciPy-solver or MG can be used all in combination or on its own, hence only MG, SciPy-solver with
MG preconditioning, only SciPy-solver.

v0.2.0 : Line relaxation

2019-01-14

• Line relaxation option.

v0.1.0 : Initial

2018-12-28

• Standard multigrid with or without BiCGSTAB.

• Tri-axial anisotropy.

• Number of cells must be 2^n, and n has to be the same in the x-, y-, and z-directions.

5.10 Maintainers Guide

5.10.1 Making a release

1. Update CHANGELOG.rst.

2. Push it to GitHub, create a release tagging it.
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3. Tagging it on GitHub will automatically deploy it to PyPi, which in turn will create a PR for the conda-forge
feedstock. Merge that PR.

4. Check that:

• PyPi deployed;

• conda-forge deployed;

• Zenodo minted a DOI;

• emg3d.rtfd.io created a tagged version.

5.10.2 Useful things

• If there were changes to README, check it with:

python setup.py --long-description | rst2html.py --no-raw > index.html

• If unsure, test it first on testpypi (requires ~/.pypirc):

~/anaconda3/bin/twine upload dist/* -r testpypi

• If unsure, test the test-pypi for conda if the skeleton builds:

conda skeleton pypi --pypi-url https://test.pypi.io/pypi/ emg3d

• If it fails, you might have to install python3-setuptools:

sudo apt install python3-setuptools

5.10.3 CI

Automatic bits

• Testing on Travis, includes:

– Tests using pytest

– Linting / code style with pytest-flake8

– Ensure all http(s)-links work (sphinx linkcheck)

• Line-coverage with pytest-cov on Coveralls

• Code-quality on Codacy

• Manual on ReadTheDocs

• DOI minting on Zenodo

Manual things

• Benchmarks with Airspeed Velocity (asv)

• Gallery in emg3d-gallery (sphinx-gallery)

Automatically deploys if tagged

• PyPi

• conda -c conda-forge
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5.11 Solver

Electromagnetic modeller in the diffusive limit (low frequencies) for 3D media with tri-axial electrical anisotropy.
The matrix-free multigrid solver can be used as main solver or as preconditioner for one of the Krylov sub-
space methods implemented in scipy.sparse.linalg, and the governing equations are discretized on a
staggered Yee grid. The code is written completely in Python using the numpy/scipy-stack, where the most
time-consuming parts are sped-up through jitted numba-functions.

5.11.1 emg3d.solver Module

The actual multigrid solver routines. The most computationally intensive parts, however, are in the emg3d.core
as numba-jitted functions.

Functions

solve(grid, model, sfield[, efield, cycle, . . . ]) Solver for 3D CSEM data with tri-axial electrical
anisotropy.

multigrid(grid, model, sfield, efield, var, . . . ) Multigrid solver for 3D controlled-source electromag-
netic (CSEM) data.

smoothing(grid, model, sfield, efield, nu, . . . ) Reducing high-frequency error by smoothing.
restriction(grid, model, sfield, residual, . . . ) Downsampling of grid, model, and fields to a coarser

grid.
prolongation(grid, efield, cgrid, cefield, . . . ) Interpolating the electric field from coarse grid to fine

grid.
residual(grid, model, sfield, efield[, norm]) Computing the residual.
krylov(grid, model, sfield, efield, var) Krylov Subspace iterative solver for 3D CSEM data.

solve

emg3d.solver.solve(grid, model, sfield, efield=None, cycle=’F’, sslsolver=False, semicoarsen-
ing=False, linerelaxation=False, verb=1, **kwargs)

Solver for 3D CSEM data with tri-axial electrical anisotropy.

The principal solver of emg3d is using the multigrid method as presented in [Muld06]. Multigrid can be used
as a standalone solver, or as a preconditioner for an iterative solver from the scipy.sparse.linalg-
library, e.g., scipy.sparse.linalg.bicgstab(). Alternatively, these Krylov subspace solvers can
also be used without multigrid at all. See the cycle and sslsolver parameters.

Implemented are the F-, V-, and W-cycle schemes for multigrid (cycle parameter), and the amount of
smoothing steps (initial smoothing, pre-smoothing, coarsest-grid smoothing, and post-smoothing) can be
set individually (nu_init, nu_pre, nu_coarse, and nu_post, respectively). The maximum level of coarsening
can be restricted with the clevel parameter.

Semicoarsening and line relaxation, as presented in [Muld07], are implemented, see the semicoarsening
and linerelaxation parameters. Using the BiCGSTAB solver together with multigrid preconditioning with
semicoarsening and line relaxation is slow but generally the most robust. Not using BiCGSTAB nor semi-
coarsening nor line relaxation is fast but may fail on stretched grids.

Parameters

grid [emg3d.meshes.TensorMesh] The grid. See emg3d.meshes.TensorMesh.

model [emg3d.models.Model] The model. See emg3d.models.Model.

sfield [emg3d.fields.SourceField] The source field. See emg3d.fields.
get_source_field().

efield [emg3d.fields.Field, optional] Initial electric field. It is initiated with zeroes
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if not provided. A provided efield MUST have frequency information (initiated with
emg3d.fields.Field(..., freq)).

If an initial efield is provided nothing is returned, but the final efield is directly put into
the provided efield.

If an initial field is provided and a sslsolver is used, then it first carries out one multigrid
cycle without semicoarsening nor line relaxation. The sslsolver is at times unstable with
an initial guess, carrying out one MG cycle helps to stabilize it.

cycle [str; optional.] Type of multigrid cycle. Default is ‘F’.

• ‘V’: V-cycle, simplest version;

• ‘W’: W-cycle, most expensive version;

• ‘F’: F-cycle, sort of a compromise between ‘V’ and ‘W’;

• None: Does not use multigrid, only sslsolver.

If None, sslsolver must be provided, and the sslsolver will be used without multigrid
pre-conditioning.

Comparison of V (left), F (middle), and W (right) cycles for the case of four grids (three
relaxation and prolongation steps):

h_
2h_ \ / \ / \ /
4h_ \ / \ /\ / \ /\ /
8h_ \/ \/\/ \/ \/\/ \/\/

sslsolver [str, optional] A scipy.sparse.linalg-solver, to use with MG as pre-
conditioner or on its own (if cycle=None). Default is False.

Current possibilities:

• True or ‘bicgstab’: BIConjugate Gradient STABilized scipy.sparse.linalg.
bicgstab();

• ‘cgs’: Conjugate Gradient Squared scipy.sparse.linalg.cgs();

• ‘gcrotmk’: GCROT: Generalized Conjugate Residual with inner Orthogonalization
and Outer Truncation scipy.sparse.linalg.gcrotmk().

It does currently not work with ‘cg’, ‘bicg’, ‘qmr’, and ‘minres’ for various reasons
(e.g., some require rmatvec in addition to matvec).

semicoarsening [int; optional] Semicoarsening. Default is False.

• True: Cycling over 1, 2, 3.

• 0 or False: No semicoarsening.

• 1: Semicoarsening in x direction.

• 2: Semicoarsening in y direction.

• 3: Semicoarsening in z direction.

• Multi-digit number containing digits from 0 to 3. Multigrid will cycle over these
values, e.g., semicoarsening=1213 will cycle over [1, 2, 1, 3].

linerelaxation [int; optional] Line relaxation. Default is False.

This parameter is not respected on the coarsest grid, except if it is set to 0. If it is bigger
than zero line relaxation on the coarsest grid is carried out along all dimensions which
have more than 2 cells.

• True: Cycling over [4, 5, 6].

• 0 or False: No line relaxation.
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• 1: line relaxation in x direction.

• 2: line relaxation in y direction.

• 3: line relaxation in z direction.

• 4: line relaxation in y and z directions.

• 5: line relaxation in x and z directions.

• 6: line relaxation in x and y directions.

• 7: line relaxation in x, y, and z directions.

• Multi-digit number containing digits from 0 to 7. Multigrid will cycle over these
values, e.g., linerelaxation=1213 will cycle over [1, 2, 1, 3].

Note: Smoothing is generally done in lexicographical order, except for line relaxation
in y direction; the reason is speed (memory access).

verb [int; optional] Level of verbosity (the higher the more verbose). Default is 1.

• 0: Nothing.

• 1: Warnings.

• 2: One-liner at the end.

• 3: Runtime and information about the method.

• 4: Additional information for each MG-cycle.

• 5: Everything (slower due to additional error computations).

• -1: One-liner (dynamically updated).

**kwargs [Optional solver options:]

• tol : float

Convergence tolerance. Default is 1e-6.

Iterations stop as soon as the norm of the residual has decreased by this factor, relative
to the residual norm obtained for a zero electric field.

• maxit : int

Maximum number of multigrid iterations. Default is 50.

If sslsolver is used, this applies to the sslsolver.

In the case that multigrid is used as a pre-conditioner for the sslsolver, the maximum
iteration for multigrid is defined by the maximum length of the linerelaxation and
semicoarsening-cycles.

• nu_init : int

Number of initial smoothing steps, before MG cycle. Default is 0.

• nu_pre : int

Number of pre-smoothing steps. Default is 2.

• nu_coarse : int

Number of smoothing steps on coarsest grid. Default is 1.

• nu_post : int

Number of post-smoothing steps. Default is 2.
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• clevel : int

The maximum coarsening level can be different for each dimension and is, by de-
fault, automatically determined (clevel=-1). The parameter clevel can be used to
restrict the maximum coarsening level in any direction by its value. Default is -1.

• return_info : bool

If True, a dictionary is returned with runtime info (final norm and number of iterations
of MG and the sslsolver).

Returns

efield [emg3d.fields.Field] Resulting electric field. Is not returned but replaced in-
place if an initial efield was provided.

info_dict [dict] Dictionary with runtime info; only if return_info=True.

Keys:

• exit: Exit status, 0=Success, 1=Failure;

• exit_message: Exit message, check this if exit=1;

• abs_error: Absolute error;

• rel_error: Relative error;

• ref_error: Reference error [norm(sfield)];

• tol: Tolerance (abs_error<ref_error*tol);

• it_mg: Number of multigrid iterations;

• it_ssl: Number of SSL iterations;

• time: Runtime (s).

• runtime_at_cycle: Runtime after each cycle (s).

• error_at_cycle: Absolute error after each cycle.

Examples

>>> import emg3d
>>> import numpy as np
>>> # Create a simple grid, 8 cells of length 1 in each direction,
>>> # starting at the origin.
>>> grid = emg3d.TensorMesh(
>>> [np.ones(8), np.ones(8), np.ones(8)],
>>> x0=np.array([0, 0, 0]))
>>> # The model is a fullspace with tri-axial anisotropy.
>>> model = emg3d.Model(grid, property_x=1.5, property_y=1.8,
>>> property_z=3.3, mapping='Resistivity')
>>> # The source is a x-directed, horizontal dipole at (4, 4, 4)
>>> # with a frequency of 10 Hz.
>>> sfield = emg3d.fields.get_source_field(
>>> grid, src=[4, 4, 4, 0, 0], freq=10)
>>> # Compute the electric signal.
>>> efield = emg3d.solve(grid, model, sfield, verb=4)
>>> # Get the corresponding magnetic signal.
>>> hfield = emg3d.fields.get_h_field(grid, model, efield)
.
:: emg3d START :: 10:27:25 :: v0.9.1
.

MG-cycle : 'F' sslsolver : False
semicoarsening : False [0] tol : 1e-06

(continues on next page)
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(continued from previous page)

linerelaxation : False [0] maxit : 50
nu_{i,1,c,2} : 0, 2, 1, 2 verb : 4
Original grid : 8 x 8 x 8 => 512 cells
Coarsest grid : 2 x 2 x 2 => 8 cells
Coarsest level : 2 ; 2 ; 2

.
[hh:mm:ss] rel. error [abs. error, last/prev] l s

.
h_
2h_ \ /
4h_ \/\/

.
[10:27:25] 2.284e-02 after 1 F-cycles [1.275e-06, 0.023] 0 0
[10:27:25] 1.565e-03 after 2 F-cycles [8.739e-08, 0.069] 0 0
[10:27:25] 1.295e-04 after 3 F-cycles [7.232e-09, 0.083] 0 0
[10:27:25] 1.197e-05 after 4 F-cycles [6.685e-10, 0.092] 0 0
[10:27:25] 1.233e-06 after 5 F-cycles [6.886e-11, 0.103] 0 0
[10:27:25] 1.415e-07 after 6 F-cycles [7.899e-12, 0.115] 0 0

.
> CONVERGED
> MG cycles : 6
> Final rel. error : 1.415e-07

.
:: emg3d END :: 10:27:25 :: runtime = 0:00:00

multigrid

emg3d.solver.multigrid(grid, model, sfield, efield, var, **kwargs)
Multigrid solver for 3D controlled-source electromagnetic (CSEM) data.

Multigrid solver as presented in [Muld06], including semicoarsening and line relaxation as presented in and
[Muld07].

• The electric field is stored in-place in efield.

• The number of multigrid cycles is stored in var.it.

• The current error (l2-norm) is stored in var.l2.

• The reference error (l2-norm of sfield) is stored in var.l2_refe.

This function is called by solve().

Parameters

grid [emg3d.meshes.TensorMesh] The grid. See emg3d.meshes.TensorMesh.

model [emg3d.models.VolumeModel] The Model. See emg3d.models.
VolumeModel.

sfield [emg3d.fields.SourceField] The source field. See emg3d.fields.
get_source_field().

efield [emg3d.fields.Field] The electric field. See emg3d.fields.Field.

var [MGParameters instance] As returned by multigrid().

**kwargs [Recursion parameters.] Do not use; only used internally by recursion; level
(current coarsening level) and new_cycmax (new maximum of MG cycles, takes care of
V/W/F-cycling).
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smoothing

emg3d.solver.smoothing(grid, model, sfield, efield, nu, lr_dir)
Reducing high-frequency error by smoothing.

Solves the linear equation system 𝐴𝑥 = 𝑏 iteratively using the Gauss-Seidel method. This acts as smoother
or, on the coarsest grid, as a direct solver.

This is a simple wrapper for the jitted computation in emg3d.core.gauss_seidel(),
emg3d.core.gauss_seidel_x(), emg3d.core.gauss_seidel_y(), and emg3d.core.
gauss_seidel_z() (@njit can not [yet] access class attributes). See these functions for more details
and corresponding theory.

The electric fields are updated in-place.

This function is called by multigrid().

Parameters

grid [emg3d.meshes.TensorMesh] Input grid.

model [emg3d.models.VolumeModel] Input model.

sfield [emg3d.fields.SourceField] Input source field.

efield [emg3d.fields.Field] Input electric field.

nu [int] Number of Gauss-Seidel steps; odd numbers are forward, even numbers are re-
versed. E.g., nu=2 is one symmetric Gauss-Seidel iteration, with a forward and a back-
ward step.

lr_dir [int] Direction of line relaxation {0, 1, 2, 3, 4, 5, 6, 7}.

restriction

emg3d.solver.restriction(grid, model, sfield, residual, sc_dir)
Downsampling of grid, model, and fields to a coarser grid.

The restriction of the residual is used as source term for the coarse grid.

Corresponds to Equations 8 and 9 in [Muld06] and surrounding text. In the case of the restriction of the
residual, this function is a wrapper for the jitted functions emg3d.core.restrict_weights() and
emg3d.core.restrict() (@njit can not [yet] access class attributes). See these functions for more
details and corresponding theory.

This function is called by multigrid().

Parameters

grid [emg3d.meshes.TensorMesh] Input grid.

model [emg3d.models.VolumeModel] Input model.

sfield [emg3d.fields.SourceField] Input source field.

sc_dir [int] Direction of semicoarsening (0, 1, 2, or 3).

Returns

cgrid [emg3d.meshes.TensorMesh] Coarse grid.

cmodel [emg3d.models.VolumeModel] Coarse model.

csfield [emg3d.fields.SourceField] Coarse source field. Corresponds to restric-
tion of fine-grid residual.

cefield [emg3d.fields.Field] Coarse electric field, complex zeroes.
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prolongation

emg3d.solver.prolongation(grid, efield, cgrid, cefield, sc_dir)
Interpolating the electric field from coarse grid to fine grid.

The prolongation from a coarser to a finer grid is the inverse process of the restriction (restriction())
from a finer to a coarser grid. The interpolated values of the coarse grid electric field are added to the fine
grid electric field, in-place. Piecewise constant interpolation is used in the direction of the field, and bilinear
interpolation in the other two directions.

See Equation 10 in [Muld06] and surrounding text.

This function is called by multigrid().

Parameters

grid, cgrid [emg3d.meshes.TensorMesh] Fine and coarse grids.

efield, cefield [emg3d.fields.Field] Fine and coarse grid electric fields.

sc_dir [int] Direction of semicoarsening (0, 1, 2, or 3).

residual

emg3d.solver.residual(grid, model, sfield, efield, norm=False)
Computing the residual.

Returns the complete residual as given in [Muld06], page 636, middle of the right column:

r = 𝑉
(︀
i𝜔𝜇0Js + i𝜔𝜇0�̃�E−∇× 𝜇−1

r ∇×E
)︀
.

This is a simple wrapper for the jitted computation in emg3d.core.amat_x() (@njit can not [yet]
access class attributes). See emg3d.core.amat_x() for more details and corresponding theory.

This function is called by multigrid().

Parameters

grid [emg3d.meshes.TensorMesh] Input grid.

model [emg3d.models.VolumeModel] Input model.

sfield [emg3d.fields.SourceField] Input source field.

efield [emg3d.fields.Field] Input electric field.

norm [bool] If True, the error (l2-norm) of the residual is returned, not the residual.

Returns

residual [Field] Returned if norm=False. The residual field; emg3d.fields.Field
instance.

norm [float] Returned if norm=True. The error (l2-norm) of the residual

krylov

emg3d.solver.krylov(grid, model, sfield, efield, var)
Krylov Subspace iterative solver for 3D CSEM data.

Using a Krylov subspace iterative solver (defined in var.sslsolver) implemented in SciPy with or without
multigrid as a pre-conditioner ([Muld06]).

• The electric field is stored in-place in efield.

• The current error (l2-norm) is stored in var.l2.
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• The reference error (l2-norm of sfield) is stored in var.l2_refe.

This function is called by solve().

Parameters

grid [emg3d.meshes.TensorMesh] The grid. See emg3d.meshes.TensorMesh.

model [emg3d.models.VolumeModel] The Model. See emg3d.models.
VolumeModel.

sfield [emg3d.fields.SourceField] The source field. See emg3d.fields.
get_source_field().

efield [emg3d.fields.Field] The electric field. See emg3d.fields.Field.

var [MGParameters instance] As returned by multigrid().

Classes

MGParameters(verb, cycle, sslsolver, . . . ) Collect multigrid solver settings.
RegularGridProlongator(x, y, cxy) Prolongate field from coarse to fine grid.

MGParameters

class emg3d.solver.MGParameters(verb: int, cycle: str, sslsolver: str, linerelaxation: int, semi-
coarsening: int, vnC: tuple, tol: float = 1e-06, maxit: int
= 50, nu_init: int = 0, nu_pre: int = 2, nu_coarse: int =
1, nu_post: int = 2, clevel: int = -1, return_info: bool =
False)

Bases: object

Collect multigrid solver settings.

This dataclass is used by the main solve()-routine. See solve() for a description of the mandatory
and optional input parameters and more information .

Returns

var [class:MGParameters] As required by multigrid().

Attributes Summary

clevel
max_level Sets dimension-dependent level variable clevel.
maxit
nu_coarse
nu_init
nu_post
nu_pre
return_info
tol

Methods Summary

cprint(info, verbosity, **kwargs) Conditional printing.
one_liner(l2_last[, last]) Print continuously updated one-liner.
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Attributes Documentation

clevel = -1

max_level
Sets dimension-dependent level variable clevel.

Requires at least two cells in each direction (for nCx, nCy, and nCz).

maxit = 50

nu_coarse = 1

nu_init = 0

nu_post = 2

nu_pre = 2

return_info = False

tol = 1e-06

Methods Documentation

cprint(info, verbosity, **kwargs)
Conditional printing.

Prints info if self.verb > verbosity.

Parameters

info [str] String to be printed.

verbosity [int] Verbosity of info.

kwargs [optional] Arguments passed to print.

one_liner(l2_last, last=False)
Print continuously updated one-liner.

Parameters

l2_last [float] Current error.

last [bool] If True, adds exit_message and finishes line.

RegularGridProlongator

class emg3d.solver.RegularGridProlongator(x, y, cxy)
Bases: object

Prolongate field from coarse to fine grid.

This is a heavily modified and adapted version of scipy.interpolate.
RegularGridInterpolator.

The main difference (besides the pre-sets) is that this version allows to initiate an instance with the coarse
and fine grids. This initialize will compute the required weights, and it has therefore only to be done once.

After this, interpolating values from the coarse to the fine grid can be carried out much faster.

Simplifications in comparison to scipy.interpolate.RegularGridInterpolator:

• No sanity checks what-so-ever.

• Only 2D data;

• method='linear';
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• bounds_error=False;

• fill_value=None.

It results in a speed-up factor of about 2, independent of grid size, for this particular case. The prolongation
is the second-most expensive part of multigrid after the smoothing. Trying to improve this further might
therefore be useful.

Parameters

x, y [ndarray] The x/y-coordinates defining the coarse grid.

cxy [ndarray of shape (. . . , 2)] The ([[x], [y]]).T-coordinates defining the fine grid.

Methods Summary

__call__(values) Return values of coarse grid on fine grid locations.

Methods Documentation

__call__(values)
Return values of coarse grid on fine grid locations.

Parameters

values [ndarray] Values corresponding to x/y-coordinates.

Returns

result [ndarray] Values corresponding to cxy-coordinates.

5.11.2 emg3d.core Module

The core functionalities, the most computationally demanding parts, of the emg3d.solver as just-in-time (jit)
compiled functions using numba.

Functions

amat_x(rx, ry, rz, ex, ey, ez, eta_x, eta_y, . . . ) Residual without or with source term.
blocks_to_amat(amat, bvec, middle, left, . . . ) Insert middle, left, and rhs into main arrays amat and

bvec.
gauss_seidel(ex, ey, ez, sx, sy, sz, eta_x, . . . ) Gauss-Seidel method.
gauss_seidel_x(ex, ey, ez, sx, sy, sz, . . . ) Gauss-Seidel method with line relaxation in x-

direction.
gauss_seidel_y(ex, ey, ez, sx, sy, sz, . . . ) Gauss-Seidel method with line relaxation in y-

direction.
gauss_seidel_z(ex, ey, ez, sx, sy, sz, . . . ) Gauss-Seidel method with line relaxation in z-

direction.
restrict(crx, cry, crz, rx, ry, rz, wx, wy, . . . ) Restriction of residual from fine to coarse grid.
restrict_weights(vectorN, vectorCC, h, . . . ) Restriction weights for the coarse-grid correction op-

erator.
solve(amat, bvec) Solve A x = b using a non-standard Cholesky factori-

sation.

amat_x

emg3d.core.amat_x(rx, ry, rz, ex, ey, ez, eta_x, eta_y, eta_z, zeta, hx, hy, hz)
Residual without or with source term.
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Compute the residual as given in [Muld06] in middle of the right column on page 636, but without the
source term:

r = 𝑉
(︀
i𝜔𝜇0�̃�E−∇× 𝜇−1

r ∇×E
)︀
.

The computation is carried out in a matrix-free manner; on said page 636 (or in the Theory of the manual)
are the various steps laid out to discretise the different parts, for instance involved curls. This can also
be understood as the left-hand-side of 𝐴𝑥 = 𝑏, as given in Equation 2 in [Muld06] (here without the cell
volumes V),

i𝜔𝜇0�̃�E −∇× 𝜁−1∇× E = −i𝜔𝜇0Js.

It can therefore be used as matvec to create a LinearOperator, which can be passed to a solver.

It is assumed that ex, ey, and ez have PEC boundaries; otherwise the output will not have PEC boundaries.

The residuals are subtracted in-place from rx, ry, and rz. That means that if rx, ry, and rz contain the source
field, they will contain the total residual afterwards; if they are empty fields, they will contain the negative
partial residual afterwards.

Parameters

rx, ry, rz [ndarray] Source field or pre-allocated zero residual field in x-, y-, and z-
directions.

ex, ey, ez [ndarray] Electric fields in x-, y-, and z-directions, as obtained from emg3d.
fields.Field.

eta_x, eta_y, eta_z, zeta [ndarray] VolumeModel parameters (multiplied by volumes) as
obtained from emg3d.models.VolumeModel().

hx, hy, hz [ndarray] Cell widths in x-, y-, and z-directions.

blocks_to_amat

emg3d.core.blocks_to_amat(amat, bvec, middle, left, rhs, im, nC)
Insert middle, left, and rhs into main arrays amat and bvec.

The banded matrix amat contains the main diagonal and the first five lower off-diagonals. They are stored
one column after the other, in a 6*n ndarray.

The complete main matrix amat and the middle and left blocks are given by:

.-0
|X|\ 0
0-.-0 left: middle: right:
\|X|\ (not used)
0-.-0 0- .- 0
\|X|\ \ |X |\
0-.-0

0 \|X|
0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower

Both, middle and left, are 5x5 matrices. The corresponding right-hand-side rhs is filled into bvec. The
matrices left and middle provided in a single call are horizontally aligned (not vertically). The sorting of
amat (banded matrix) and bvec are given by:

amat (66,) example: n = 11 bvec (11,)
-------------- --
|01 | FIRST CALL 01
|02 07 | Only `middle` and `rhs` 02

(continues on next page)
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(continued from previous page)

|03 08 13 | are used, not `left`. 03
|04 09 14 19 | 04
|05 10 15 20 25| 05
-------------- -------------- --
| 0 11 16 21 26|31 | SUBSEQUENT CALLS 06
| 12 17 22 27|32 37 | (normal case) 07
| 18 23 28|33 38 43 | Complete `left`, 08
| 24 29|34 39 44 49 | `middle` and `rhs` 09
| 30|35 40 45 50 55| are used. 10
-------------- -------------- --- --

| 0 41 46 51 56|61 LAST CALL 11
| 0 0 0 0| 0 Only top row of `left`
| 0 0 0| 0 and the first elements
| 0 0| 0 of `middle` and `rhs`
| 0| 0 are used.
-------------- ---

| 0

Single zeros (0) show elements in amat which are 0, hence not used.
Their location in amat can be deduced from their neighbours.

Parameters

amat [ndarray] Main banded matrix (stored as array) of length 6*n.

bvec [ndarray] Main right-hand-side of length n.

middle [ndarray] Middle block of size 5x5, as ndarray of length 25. Only the diagonal and
the lower triangular part are used.

left [ndarray] Left block of size 5x5, as ndarray of length 25. Only the diagonal and the
first row are used.

rhs [ndarray] Corresponding right-hand-side of length 5.

im [int] Current minus-index of direction of line relaxation, {ixm, iym, izm}.

nC [int] Total number of cells in direction of line relaxation, {nCx, nCy, nCz}.

gauss_seidel

emg3d.core.gauss_seidel(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)
Gauss-Seidel method.

Solves the linear equation system 𝐴𝑥 = 𝑏 iteratively using the following method:

x(𝑘+1) = 𝐿−1
*

(︁
b− 𝑈x(𝑘)

)︁
,

where 𝐿* is the lower triangular component, and 𝑈 the strictly upper triangular component, 𝐴 = 𝐿* + 𝑈 :

𝐿* =

⎡⎢⎢⎢⎣
𝑎11 0 · · · 0
𝑎21 𝑎22 · · · 0

...
...

. . .
...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎤⎥⎥⎥⎦ , 𝑈 =

⎡⎢⎢⎢⎣
0 𝑎12 · · · 𝑎1𝑛
0 0 · · · 𝑎2𝑛
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎦ .

On the coarsest grid it acts as direct solver, whereas on the fine grid it acts as a smoother with only few
iterations, defined by 𝜈 (nu). Odd numbers of nu use forward ordering, even numbers use backwards
ordering. nu=2 is therefore one symmetric Gauss-Seidel iteration, one forward ordered iteration followed
by one backward ordered iteration.

From [Muld06]: The method proposed by [ArFW00] is chosen as a smoother. It selects one node of the
grid and simultaneously solves for the six degrees of freedom on the six edges attached to the node. If
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node (𝑥𝑘, 𝑦𝑙, 𝑧𝑚) is selected, the six equations, 𝑟𝑥;𝑘±1/2,𝑙,𝑚 = 0, 𝑟𝑦;𝑘,𝑙±1/2,𝑚 = 0 and 𝑟𝑧;𝑘,𝑙,𝑚±1/2 = 0,
are solved for 𝑒𝑥;𝑘±1/2,𝑙,𝑚, 𝑒𝑦;𝑘,𝑙±1/2,𝑚 and 𝑒𝑧;𝑘,𝑙,𝑚±1/2. Here, this smoother is applied in a symmetric
Gauss-Seidel fashion, following the lexicographical ordering of the nodes (𝑥𝑘, 𝑦𝑙, 𝑧𝑚), with fastest index
𝑘 = 1, . . . , 𝑁𝑥 − 1, intermediate index 𝑙 = 1, . . . , 𝑁𝑦 − 1, and slowest index 𝑚 = 1, . . . , 𝑁𝑧 − 1.

To actually solve the system of six equations a non-standard Cholesky factorisation is used, solve().

Tangential components at the boundaries are assumed to be zero (PEC boundaries).

The result is stored in the provided electric fields ex, ey, and ez.

Parameters

ex, ey, ez [ndarray] Electric fields in x-, y-, and z-directions, as obtained from emg3d.
fields.Field.

sx, sy, sz : Source fields in x-, y-, and z-directions, as obtained from emg3d.fields.
Field.

eta_x, eta_y, eta_z, zeta : VolumeModel parameters (multiplied by volumes) as obtained
from emg3d.models.VolumeModel().

hx, hy, hz [ndarray] Cell widths in x-, y-, and z-directions.

nu [int] Number of Gauss-Seidel iterations.

gauss_seidel_x

emg3d.core.gauss_seidel_x(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)
Gauss-Seidel method with line relaxation in x-direction.

This is the equivalent to gauss_seidel(), but with line relaxation in the x-direction. See
gauss_seidel() for more details.

The resulting system A x = b to solve consists of n unknowns (x-vector), and the corresponding matrix A is
a banded matrix with the main diagonal and five upper and lower diagonals:

.-0
|X|\ 0
0-.-0 left: middle: right:
\|X|\ (not used)
0-.-0 0- .- 0
\|X|\ \ |X |\
0-.-0

0 \|X|
0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower

The matrix A is complex and symmetric (A = A^T), and therefore only the main diagonal and the lower five
off-diagonals are required.

• The right-hand-side b has length 5*nCx-4 (nCx even).

• The matrix A has length of b and 1+2*5 diagonals; we use for it an array of length 6*len(b).

The values are computed in rows of 5 lines, with the indicated middle and left matrices as indicated in the
above scheme. These blocks are filled into the main matrix A and vector b, and subsequently solved with a
non-standard Cholesky factorisation, solve().

Tangential components at the boundaries are assumed to be 0 (PEC boundaries).

The result is stored in the provided electric fields ex, ey, and ez.

Parameters
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ex, ey, ez [ndarray] Electric fields in x-, y-, and z-directions, as obtained from emg3d.
fields.Field.

sx, sy, sz : Source fields in x-, y-, and z-directions, as obtained from emg3d.fields.
Field.

eta_x, eta_y, eta_z, zeta : VolumeModel parameters (multiplied by volumes) as obtained
from emg3d.models.VolumeModel().

hx, hy, hz [ndarray] Cell widths in x-, y-, and z-directions.

nu [int] Number of Gauss-Seidel iterations.

gauss_seidel_y

emg3d.core.gauss_seidel_y(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)
Gauss-Seidel method with line relaxation in y-direction.

This is the equivalent to gauss_seidel(), but with line relaxation in the y-direction. See
gauss_seidel() for more details.

The resulting system A x = b to solve consists of n unknowns (x-vector), and the corresponding matrix A is
a banded matrix with the main diagonal and five upper and lower diagonals:

.-0
|X|\ 0
0-.-0 left: middle: right:
\|X|\ (not used)
0-.-0 0- .- 0
\|X|\ \ |X |\
0-.-0

0 \|X|
0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower

The matrix A is complex and symmetric (A = A^T), and therefore only the main diagonal and the lower five
off-diagonals are required.

• The right-hand-side b has length 5*nCy-4 (nCy even).

• The matrix A has length of b and 1+2*5 diagonals; we use for it an array of length 6*len(b).

The values are computed in rows of 5 lines, with the indicated middle and left matrices as indicated in the
above scheme. These blocks are filled into the main matrix A and vector b, and subsequently solved with a
non-standard Cholesky factorisation, solve().

Note: The smoothing with linerelaxation in y-direction is carried out in reversed lexicographical order, in or-
der to improve speed (memory access). All other smoothers (gauss_seidel(), gauss_seidel_x(),
and gauss_seidel_z()) use lexicographical order.

Tangential components at the boundaries are assumed to be 0 (PEC boundaries).

The result is stored in the provided electric fields ex, ey, and ez.

Parameters

ex, ey, ez [ndarray] Electric fields in x-, y-, and z-directions, as obtained from emg3d.
fields.Field.

sx, sy, sz : Source fields in x-, y-, and z-directions, as obtained from emg3d.fields.
Field.

eta_x, eta_y, eta_z, zeta : VolumeModel parameters (multiplied by volumes) as obtained
from emg3d.models.VolumeModel().

hx, hy, hz [ndarray] Cell widths in x-, y-, and z-directions.
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nu [int] Number of Gauss-Seidel iterations.

gauss_seidel_z

emg3d.core.gauss_seidel_z(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)
Gauss-Seidel method with line relaxation in z-direction.

This is the equivalent to gauss_seidel(), but with line relaxation in the z-direction. See
gauss_seidel() for more details.

The resulting system A x = b to solve consists of n unknowns (x-vector), and the corresponding matrix A is
a banded matrix with the main diagonal and five upper and lower diagonals:

.-0
|X|\ 0
0-.-0 left: middle: right:
\|X|\ (not used)
0-.-0 0- .- 0
\|X|\ \ |X |\
0-.-0

0 \|X|
0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower

The matrix A is complex and symmetric (A = A^T), and therefore only the main diagonal and the lower five
off-diagonals are required.

• The right-hand-side b has length 5*nCz-4 (nCz even).

• The matrix A has length of b and 1+2*5 diagonals; we use for it an array of length 6*len(b).

The values are computed in rows of 5 lines, with the indicated middle and left matrices as indicated in the
above scheme. These blocks are filled into the main matrix A and vector b, and subsequently solved with a
non-standard Cholesky factorisation, solve().

Tangential components at the boundaries are assumed to be 0 (PEC boundaries).

The result is stored in the provided electric fields ex, ey, and ez.

Parameters

ex, ey, ez [ndarray] Electric fields in x-, y-, and z-directions, as obtained from emg3d.
fields.Field.

sx, sy, sz : Source fields in x-, y-, and z-directions, as obtained from emg3d.fields.
Field.

eta_x, eta_y, eta_z, zeta : VolumeModel parameters (multiplied by volumes) as obtained
from emg3d.models.VolumeModel().

hx, hy, hz [ndarray] Cell widths in x-, y-, and z-directions.

nu [int] Number of Gauss-Seidel iterations.

restrict

emg3d.core.restrict(crx, cry, crz, rx, ry, rz, wx, wy, wz, sc_dir)
Restriction of residual from fine to coarse grid.

54 Chapter 5. License information



emg3d Documentation, Release 0.14.3

Corresponds to Equation 8 in [Muld06]. The equation for the x-direction, using the notation {𝑥, 𝑦, 𝑧}
instead of {1, 2, 3}, is given by

𝑟2ℎ𝑥,𝐾+1/2,𝐿,𝑀 =

1∑︁
𝑗𝑦=−1

1∑︁
𝑗𝑧=−1

𝑤𝑦
𝐿,𝑗𝑦

𝑤𝑧
𝑀,𝑗𝑧

×
(︁
𝑟ℎ𝑥,𝑘+1/2,𝑙+𝑗𝑦,𝑚+𝑗𝑧

+ 𝑟ℎ𝑥,𝑘+3/2,𝑙+𝑗𝑦,𝑚+𝑗𝑧

)︁
.

The superscripts ℎ, 2ℎ indicate quantities defined on the coarse grid and on the fine grid, respectively. The
indices {𝐾,𝐿,𝑀} on the coarse grid correspond to {𝑘, 𝑙,𝑚} = 2{𝐾,𝐿,𝑀} on the fine grid. The weights
𝑤 are obtained from restrict_weights().

The restrictions of rx, ry, and rz are stored directly in crx, cry, and crz.

Parameters

crx, cry, crz [ndarray] Coarse grid {x,y,z}-directed residual (pre-allocated empty arrays).

rx, ry, rz [ndarray] Fine grid {x,y,z}-directed residual.

wx, wy, wz: tuple Tuples containing the weights (wl, w0, wr) as returned from
restrict_weights() for the x-, y-, and z-directions.

sc_dir [int] Direction of semicoarsening; 0 for no semicoarsening.

restrict_weights

emg3d.core.restrict_weights(vectorN, vectorCC, h, cvectorN, cvectorCC, ch)
Restriction weights for the coarse-grid correction operator.

Corresponds to Equation 9 in [Muld06]. A generalized version of that equation is given by

𝑤𝑣
𝑄,−1 =

(︁
𝑣ℎ𝑞−1/2 − 𝑣2ℎ𝑄−1/2

)︁
/𝑑𝑣𝑞−1,

𝑤𝑣
𝑄,0 = 1,

𝑤𝑣
𝑄,1 =

(︁
𝑣2ℎ𝑄+1/2 − 𝑣ℎ𝑞+1/2

)︁
/𝑑𝑣𝑞+1,

where 𝑑 are the dual grid cell widths, 𝑣 is one of {𝑥, 𝑦, 𝑧}, and 𝑄, 𝑞 the corresponding entries of
{𝐾,𝐿,𝑀}, {𝑘, 𝑙,𝑚}. The superscripts ℎ, 2ℎ indicate quantities defined on the coarse grid and on the
fine grid, respectively. The indices {𝐾,𝐿,𝑀} on the coarse grid correspond to {𝑘, 𝑙,𝑚} = 2{𝐾,𝐿,𝑀}
on the fine grid.

For the dual volume cell widths at the boundaries the scheme of [MoSu94] is applied, where 𝑑𝑥0 = ℎ𝑥
1/2/2

at 𝑘 = 0, 𝑑𝑥𝑁𝑥
= ℎ𝑥

𝑁𝑥−1/2 at 𝑘 = 𝑁𝑥, and so on.

The following parameters must all be in the same direction, hence, all must be either for the x, the y, or the
z direction. The returned weights are for this direction.

Parameters

vectorN, cvectorN [ndarray] Cell edges of the fine (vectorN) and coarse (cvectorN) grids.

vectorCC, cvectorCC [ndarray] Cell centers of the fine (vectorCC) and coarse (cvec-
torCC) grids.

h, ch [ndarray] Cell widths of the fine (h) and coarse (ch) grids.

Returns

wl, w0, wr [ndarray] Left, central, and right weights in the direction provided in the input.
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solve

emg3d.core.solve(amat, bvec)
Solve A x = b using a non-standard Cholesky factorisation.

Solve the system A x = b using a non-standard Cholesky factorisation without pivoting for a symmetric,
complex matrix A tailored to the problem of the multigrid solver. The matrix A (amat) is an array of length
6*n, containing the main diagonal and the first five lower off-diagonals (ordered so that the first element of
the main diagonal is followed by the first elements of the off diagonals, then the second elements and so
on). The vector bvec has length b.

The solution is placed in b (bvec), and A (amat) is replaced by its decomposition.

1. Non-standard Cholesky factorisation.

From [Muld07]: We use a non-standard Cholesky factorisation. The standard factorisation
factors a hermitian matrix A into L L^H, where L is a lower triangular matrix and L^H its
complex conjugate transpose. In our case, the discretisation is based on the Finite Integration
Technique ([Weil77]) and provides a matrix A that is complex-valued and symmetric: A
= A^T, where the superscript T denotes the transpose. The line relaxation scheme takes a
matrix B that is a subset of A along the line. B is a complex symmetric band matrix with
eleven diagonals. The non-standard Cholesky factorisation factors the matrix B into L L^T.
Because of the symmetry, only the main diagonal and five lower diagonal elements of B
need to be computed. The Cholesky factorisation replaces this matrix by L, containing six
diagonals, after which the line relaxation can be carried out by simple back-substitution.

𝐴 = 𝐿𝐷𝐿𝑇 factorisation without pivoting:

𝐷(𝑗) = 𝐴(𝑗, 𝑗) −
𝑗−1∑︁
𝑘=1

𝐿(𝑗, 𝑘)2𝐷(𝑘), 𝑗 = 1, .., 𝑛;

𝐿(𝑖, 𝑗) =
1

𝐷(𝑗)

[︃
𝐴(𝑖, 𝑗) −

𝑗−1∑︁
𝑘=1

𝐿(𝑖, 𝑘)𝐿(𝑗, 𝑘)𝐷(𝑘)

]︃
, 𝑖 = 𝑗 + 1, .., 𝑛.

A and L are in this case arrays, where 𝐴(𝑖, 𝑗) → 𝐴(𝑖 + 5𝑗).

2. Solve A x = b.

Solve A x = b, given L which is the result from the factorisation in the first step (and stored
in A), hence, solve L x = b, where x is stored in b:

𝑏(𝑗) = 𝑏(𝑗) −
𝑗−1∑︁
𝑘=1

𝐿(𝑗, 𝑘)𝑥(𝑘), 𝑗 = 2, .., 𝑛.

The result is equivalent with simply using numpy.linalg.solve(), but faster for the particular use-
case of this code.

Note that in this custom solver there is no pivoting, and the diagonals of the matrix cannot be zero.

Parameters

amat [ndarray] Banded matrix A provided as a vector of length 6*n, containing main diag-
onal plus first five lower diagonals.

bvec [ndarray] Right-hand-side vector b of length n.

5.12 Meshes, Models, and Fields

5.12.1 emg3d.meshes Module

Everything related to meshes appropriate for the multigrid solver.
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Functions

construct_mesh(frequency, properties, center) Return a TensorMesh for given parameters.
get_origin_widths(frequency, properties, cen-
ter)

Return origin and cell widths for given parameters.

skin_depth(frequency, conductivity[, mu, . . . ]) Return skin depth for provided frequency and conduc-
tivity.

wavelength(skin_depth[, precision]) Return the wavelength.
good_mg_cell_nr([max_nr, max_prime,
min_div])

Returns ‘good’ cell numbers for the multigrid method.

min_cell_width(skin_depth[, pps, limits, . . . ]) Return the minimum cell width.
get_hx_h0(freq, res, domain[, fixed, . . . ]) Return cell widths and origin for given parameters.
get_cell_numbers(max_nr[, max_prime,
min_div])
get_stretched_h(min_width, domain, nx[, x0,
. . . ])

Return cell widths for a stretched grid within the do-
main.

get_domain([x0, freq, res, limits, . . . ]) Get domain extent and minimum cell width as a func-
tion of skin depth.

get_hx(alpha, domain, nx, x0[, resp_domain]) Return cell widths for given input.

construct_mesh

emg3d.meshes.construct_mesh(frequency, properties, center, domain=None, vector=None, sea-
surface=None, **kwargs)

Return a TensorMesh for given parameters.

The constructed mesh is frequency- and conductivity-dependent, where properties are turned into con-
ductivities through the provided mapping, which is 'Resistivity' by default. Some details are ex-
plained in other functions:

• The minimum cell width ∆min is a function of frequency, properties[0], min_width_pps,
and min_width_limits, see Equation (5.34).

• The skin depth 𝛿 is a function of frequency and properties, see Equation (5.32).

• The wavelength 𝜆 is a function of frequency and properties, see Equation (5.33).

The relation of the survey domain, computational domain, and buffer zone is shown in Figure 5.12 for a x-
z-section; the y-direction behaves the same as the x-direction (the figures are only visible in the web version
on https://emg3d.rtfd.io).

By default, the buffer zone around the survey domain is one wavelength. This means that the signal has to
travel two wavelengths to get from the end of the survey domain to the end of the computational domain and
back. This approach is quite conservative and on the safe side. You can reduce the buffer thickness if you
know what you are doing. There are three parameters which influence the thickness of the buffer for a given
frequency: properties, which is used to calculate the skin depth and the wavelength, lambda_factor
(default is 1) which sets how many times the wavelength is the thickness of the buffer (relative factor), and
max_buffer, which is an absolute maximum for the buffer thickness. A graphical illustration is given in
Figure 5.13.

Parameters

frequency [float] Frequency (Hz) to calculate skin depth; both the minimum cell width and
the extent of the buffer zone, and therefore of the computational domain, are a function
of skin depth.

properties [float or list] Properties to calculate the skin depths. The properties can be either
resistivities, conductivities, or the logarithm (natural or base 10) thereof. By default it
assumes resistivities, but it can be changed with the parameter mapping.

Four formats are recognized:
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Figure 5.12:: Relation between survey domain (Ds, domain), computational domain (Dc), and buffer zone. The
survey domain should contain all sources and receivers as well as any important feature that should be represented
in the data. The buffer zone is calculated as a function of wavelength with the provided property in the given
direction.

Figure 5.13:: The thickness of the buffer zone (B) for (I) lambda_from_center=False (default) and for (II)
lambda_from_center=True. The lambda_factor (𝜆𝑓𝑎𝑐𝑡) is a simple scaling factor for the wavelength
𝜆. The max_buffer is an absolute limitation.
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• 1: Same property for everything;

• 2: [min_width, buffer (+/-)] for all directions;

• 4: [min_width, xy-buffer (+/-), z-, z+];

• 7: [min_width, x-, x+, y-, y+, z-, z+].

The property min_width is usually the property at the center, hence at the source
location. The other properties are used to define the extent of the buffer zone around the
survey domain in the respective directions.

center [tuple] Tuple (or list, ndarray) of three floats for (x, y, z). The mesh is centered
around this point, which means that here is the smallest cell. Usually this is the source
location.

domain [tuple of lists, list, or None, optional] Contains the survey-domain limits. This
domain should include all source and receiver positions as well as any important feature
of the model. Format: ([xmin, xmax], [ymin, ymax], [zmin, zmax]).

It can be None, or individual lists can be None (e.g., (None, None, [zmin,
zmax])), in which case you have to provide a vector, which is then assumed to
span exactly the domain. If only one list is provided it is applied to all dimensions.

vector [tuple of three ndarrays, ndarray, or None, optional] Contains vectors of mesh-edges
that should be used. If provided, the vector MUST at least include all of the survey
domain. If domain is not provided, it is defined as the minimum/maximum of the
provided vector. Format: (xvector, yvector, zvector).

It can be None, or individual ndarrays can be None (e.g., (xvector, yvector,
None)), in which case you have to provide a domain. If only one ndarray is provided
it is applied to all dimensions.

seasurface [float, optional] Air-sea interface. This has only to be set in the marine case,
when the mesh in z-direction is sought for (and the interface is not contained in
vector). If set, it will ensure that at the sea surface is an actual boundary. It has
to be bigger then the lower limit of the survey domain. Default is None.

stretching [list or tuple of lists, optional] Maximum stretching factors in the form of [max
Ds, max Dc]: the first value is the maximum stretching for the survey domain (de-
fault is 1.0), the second value is the maximum stretching for the buffer zone (default is
1.5). If a list is provided the same is used for all three dimension. Alternatively a tuple
of three lists can be provided, (x, y, z). Note that the first value has no influence
on dimensions where a vector is provided.

min_width_limits [float, list or None, optional] Passed through min_cell_width() as
limits. A tuple of three can be provided for direction dependent values. Note that
this value has no influence on dimensions where a vector is provided.

Default is None.

min_width_pps [float or int, optional] Passed through min_cell_width() as pps. A
tuple of three can be provided for direction dependent values. Note that this value has
no influence on dimensions where a vector is provided.

Default is 3.

lambda_factor [float, optional] The buffer is taken as one wavelength from the sur-
vey domain. This can be regarded as quite conservative (but safe). The parameter
lambda_factor can be used to reduce (or increase) this factor. Default is 1.0.

max_buffer [float, optional] Maximum thickness of the buffer zone around survey domain.
If lambda_from_center=True, this is the maximum distance from the center to
the end of the computational domain. Default is 100,000 (100 km).

lambda_from_center [bool, optional] Flag how to compute the extent of the computational
mesh as a function of wavelength:
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• False (default): The distance from the edge of the survey domain to the edge of the
computational domain is one wavelength.

• True: The distance from the center to the edge of the computational domain and back
to the end of the survey domain is two wavelengths.

mapping [str or map, optional] Defines what type the input property_{x;y;z}-values
correspond to. By default, they represent resistivities (Ohm.m). The implemented map-
pings are:

• ‘Conductivity’; 𝜎 (S/m),

• ‘LgConductivity’; log_10(𝜎),

• ‘LnConductivity’; log_e(𝜎),

• ‘Resistivity’; 𝜌 (Ohm.m); Default,

• ‘LgResistivity’; log_10(𝜌),

• ‘LnResistivity’; log_e(𝜌).

cell_numbers [list, optional] List of possible numbers of cells. See
good_mg_cell_nr(). Default is good_mg_cell_nr(1024, 5, 3),
which corresponds to numbers 16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320,
384, 512, 640, 768, 1024.

verb [int, optional] Verbosity, -1 (error); 0 (warning), 1 (info), 2 (verbose). Default = 0
(Warnings only).

Returns

origin [float] Origin of the mesh.

widths [ndarray] Cell widths of mesh.

get_origin_widths

emg3d.meshes.get_origin_widths(frequency, properties, center, domain=None, vector=None,
seasurface=None, **kwargs)

Return origin and cell widths for given parameters.

This function works in one dimension only, and is used by construct_mesh() once in each direction.
It is recommended to use directly function construct_mesh(), which returns a TensorMesh.

All the parameters are described in construct_mesh(). Described here are only the differences.

Parameters

All [description] All parameters are described in construct_mesh(). The only differ-
ence is that here only variables for one direction are accepted.

raise_error [bool, optional] If True, an error is raised if no suitable grid is found. Otherwise
it just prints a message and returns None’s. Default is True.

Returns

origin [float] Origin of the mesh.

widths [ndarray] Cell widths of mesh.

skin_depth

emg3d.meshes.skin_depth(frequency, conductivity, mu=1.25663706212e-06, precision=0)
Return skin depth for provided frequency and conductivity.
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The skin depth 𝛿 (m) is given by

𝛿 =

√︂
2

𝜔𝜎𝜇
, (5.32)

where 𝜔 = 2𝜋𝑓 is angular frequency of frequency 𝑓 (Hz), 𝜎 is conductivity (S/m), and 𝜇 is magnetic
permeability (H/m).

Parameters

frequency [float] Frequency (Hz).

conductivity [float] Conductivity (S/m).

mu [float, optional] Magnetic permeability (H/m); default is 𝜇0.

precision [int, optional] Precision of the return skin depth. Default is 0, hence meters.

Returns

skindepth [float] Skin depth (m).

wavelength

emg3d.meshes.wavelength(skin_depth, precision=0)
Return the wavelength.

The wavelength 𝜆 (m) is given by

𝜆 = 2𝜋𝛿 . (5.33)

The skin depth 𝛿 is a function of frequency and conductivity and is given by skin_depth(), Equation
(5.32).

Parameters

skin_depth [float or ndarray.] Skin depth (m).

precision [int, optional] Precision of the returned wave length. Default is 0, hence meters.

Returns

wavelength [float or ndarray] Wavelength (m).

good_mg_cell_nr

emg3d.meshes.good_mg_cell_nr(max_nr=1024, max_prime=5, min_div=3)
Returns ‘good’ cell numbers for the multigrid method.

‘Good’ cell numbers are numbers which can be divided by 2 as many times as possible. At the end there
will be a low prime number.

The function adds all numbers 𝑝2𝑛 ≤ 𝑀 for 𝑝 = 2, 3, ..., 𝑝max and 𝑛 = 𝑛min, 𝑛min + 1, ...,∞; 𝑀,𝑝max, 𝑛min
correspond to max_nr, max_prime, and min_div, respectively.

Parameters

max_nr [int, optional] Maximum number of cells. Default is 1024.

max_prime [int, optional] Highest permitted prime number p for p*2^n. {2, 3, 5, 7} are
good upper limits in order to avoid too big lowest grids in the multigrid method. Default
is 5.

min_div [int, optional] Minimum times the number can be divided by two. Default is 3.

Returns

numbers [array] Array containing all possible cell numbers from lowest to highest.
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min_cell_width

emg3d.meshes.min_cell_width(skin_depth, pps=3, limits=None, precision=0)
Return the minimum cell width.

The minimum cell width is defined by the desired points per skin depth,

∆min = limits[0] ≤ 𝛿

pps
≤ limits[1] . (5.34)

The skin depth 𝛿 is a function of frequency and conductivity and is given by skin_depth(), Equation
(5.32).

Parameters

skin_depth [float] Skin depth (m).

pps [int] Points per skin depth.

limits [None, float, or list of two floats] Limits on minimum width:

• None: No limits.

• float: Returns limits as dmin.

• [min, max]: dmin is limited to this range.

precision [int, optional] Precision of the cell width. Provided limits are not rounded. De-
fault is 0, hence meters.

Returns

dmin [float] Minimum cell width (m).

get_hx_h0

emg3d.meshes.get_hx_h0(freq, res, domain, fixed=0.0, possible_nx=None, min_width=None,
pps=3, alpha=None, max_domain=100000.0, raise_error=True,
verb=1, return_info=False)

Return cell widths and origin for given parameters.

Returns cell widths for the provided frequency, resistivity, domain extent, and other parameters using a
flexible amount of cells. See input parameters for more details. A maximum of three hard/fixed boundaries
can be provided (one of which is the grid center).

The minimum cell width is computed through 𝛿/pps, where the skin depth is given by 𝛿 = 503.3
√︀
𝜌/𝑓 ,

and the parameter pps stands for ‘points-per-skindepth’. The minimum cell width can be restricted with the
parameter min_width.

The actual computation domain adds a buffer zone around the (survey) domain. The thickness of the buffer
is six times the skin depth. The field is basically zero after two wavelengths. A wavelength is 2𝜋𝛿, hence
roughly 6 times the skin depth. Taking a factor 6 gives therefore almost two wavelengths, as the field travels
to the boundary and back. The actual buffer thickness can be steered with the res parameter.

One has to take into account that the air is very resistive, which has to be considered not just in the vertical
direction, but also in the horizontal directions, as the airwave will bounce back from the sides otherwise. In
the marine case this issue reduces with increasing water depth.

Parameters

freq [float] Frequency (Hz) to compute the skin depth. The skin depth is a concept defined
in the frequency domain. If a negative frequency is provided, it is assumed that the
computation is carried out in the Laplace domain. To compute the skin depth, the value
of freq is then multiplied by −2𝜋, to simulate the closest frequency-equivalent.
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res [float or list] Resistivity (Ohm m) to compute the skin depth. The skin depth is used to
compute the minimum cell width and the boundary thicknesses. Up to three resistivities
can be provided:

• float: Same resistivity for everything;

• [min_width, boundaries];

• [min_width, left boundary, right boundary].

domain [list] Contains the survey-domain limits [min, max]. The actual computation do-
main consists of this domain plus a buffer zone around it, which depends on frequency
and resistivity.

fixed [list, optional] Fixed boundaries, one, two, or maximum three values. The grid is
centered around the first value. Hence it is the center location with the smallest cell.
Two more fixed boundaries can be added, at most one on each side of the first one.
Default is 0.

possible_nx [list, optional] List of possible numbers of cells. See
good_mg_cell_nr(). Default is good_mg_cell_nr(1024, 5, 3),
which corresponds to numbers 16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320,
384, 512, 640, 768, 1024.

min_width [float, list or None, optional] Minimum cell width restriction:

• None : No restriction;

• float : Fixed to this value, ignoring skin depth and pps.

• list [min, max] : Lower and upper bounds.

Default is None.

pps [int, optional] Points per skindepth; minimum cell width is computed via dmin =
skindepth/pps. Default = 3.

alpha [list, optional] Maximum alpha and step size to find a good alpha. The first value
is the maximum alpha of the survey domain, the second value is the maximum alpha
for the buffer zone, and the third value is the step size. Default = [1, 1.5, .01], hence
no stretching within the survey domain and a maximum stretching of 1.5 in the buffer
zone; step size is 0.01.

max_domain [float, optional] Maximum computation domain from fixed[0] (usually
source position). Default is 100,000.

raise_error [bool, optional] If True, an error is raised if no suitable grid is found. Otherwise
it just prints a message and returns None’s. Default is True.

verb [int, optional] Verbosity, 0 or 1. Default = 1.

return_info [bool] If True, a dictionary is returned with some grid info (min and max cell
width and alpha).

Returns

hx [ndarray] Cell widths of mesh.

x0 [float] Origin of the mesh.

info [dict] Dictionary with mesh info; only if return_info=True.

Keys:

• dmin: Minimum cell width;

• dmax: Maximum cell width;

• amin: Minimum alpha;

• amax: Maximum alpha.
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See also:

get_stretched_h Get hx for a fixed number nx and within a fixed domain.

get_cell_numbers

emg3d.meshes.get_cell_numbers(max_nr, max_prime=5, min_div=3)

get_stretched_h

emg3d.meshes.get_stretched_h(min_width, domain, nx, x0=0, x1=None, resp_domain=False)
Return cell widths for a stretched grid within the domain.

Returns nx cell widths within domain, where the minimum cell width is min_width. The cells are not
stretched within x0 and x1, and outside uses a power-law stretching. The actual stretching factor and the
number of cells left and right of x0 and x1 are found in a minimization process.

The domain is not completely respected. The starting point of the domain is, but the endpoint of the domain
might slightly shift (this is more likely the case for small nx, for big nx the shift should be small). The
new endpoint can be obtained with domain[0]+np.sum(hx). If you want the domain to be respected
absolutely, set resp_domain=True. However, be aware that this will introduce one stretch-factor which
is different from the other stretch factors, to accommodate the restriction. This one-off factor is between the
left- and right-side of x0, or, if x1 is provided, just after x1.

Parameters

min_width [float] Minimum cell width. If x1 is provided, the actual minimum cell width
might be smaller than min_width.

domain [list] [start, end] of model domain.

nx [int] Number of cells.

x0 [float] Center of the grid. x0 is restricted to domain. Default is 0.

x1 [float] If provided, then no stretching is applied between x0 and x1. The non-stretched
part starts at x0 and stops at the first possible location at or after x1. x1 is restricted to
domain. This will min_width so that an integer number of cells fit within x0 and x1.

resp_domain [bool] If False (default), then the domain-end might shift slightly to assure
that the same stretching factor is applied throughout. If set to True, however, the domain
is respected absolutely. This will introduce one stretch-factor which is different from
the other stretch factors, to accommodate the restriction. This one-off factor is between
the left- and right-side of x0, or, if x1 is provided, just after x1.

Returns

hx [ndarray] Cell widths of mesh.

See also:

get_hx_x0 Get hx and x0 for a flexible number of nx with given bounds.

get_domain

emg3d.meshes.get_domain(x0=0, freq=1, res=0.3, limits=None, min_width=None, fact_min=0.2,
fact_neg=5, fact_pos=None)

Get domain extent and minimum cell width as a function of skin depth.
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Returns the extent of the computation domain and the minimum cell width as a multiple of the skin depth,
with possible user restrictions on minimum computation domain and range of possible minimum cell widths.

𝛿 = 503.3

√︂
𝜌

𝑓
,

𝑥start = 𝑥0 − 𝑘neg𝛿,

𝑥end = 𝑥0 + 𝑘pos𝛿,

ℎmin = 𝑘min𝛿.

Parameters

x0 [float] Center of the computation domain. Normally the source location. Default is 0.

freq [float] Frequency (Hz) to compute the skin depth. The skin depth is a concept defined
in the frequency domain. If a negative frequency is provided, it is assumed that the
computation is carried out in the Laplace domain. To compute the skin depth, the value
of freq is then multiplied by −2𝜋, to simulate the closest frequency-equivalent.

Default is 1 Hz.

res [float, optional] Resistivity (Ohm m) to compute skin depth. Default is 0.3 Ohm m (sea
water).

limits [None or list] [start, end] of model domain. This extent represents the minimum
extent of the domain. The domain is therefore only adjusted if it has to reach outside of
[start, end]. Default is None.

min_width [None, float, or list of two floats] Minimum cell width is computed as a function
of skin depth: fact_min*sd. If min_width is a float, this is used. If a list of two values
[min, max] are provided, they are used to restrain min_width. Default is None.

fact_min, fact_neg, fact_pos [floats] The skin depth is multiplied with these factors to es-
timate:

• Minimum cell width (fact_min, default 0.2)

• Domain-start (fact_neg, default 5), and

• Domain-end (fact_pos, defaults to fact_neg).

Returns

h_min [float] Minimum cell width.

domain [list] Start- and end-points of computation domain.

get_hx

emg3d.meshes.get_hx(alpha, domain, nx, x0, resp_domain=True)
Return cell widths for given input.

Find the number of cells left (nl) and right (nr) of the center x0 for the provided alpha. For this, we solve

𝑥max − 𝑥0

𝑥0 − 𝑥min
=

𝑎nr − 1

𝑎nl − 1

where 𝑎 = 1 + 𝛼.

Parameters

alpha [float] Stretching factor a is given by a=1+alpha.

domain [list] [x_min, x_max] of model domain.

nx [int] Number of cells.

x0 [float] Center of the grid. x0 is restricted to domain.
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resp_domain [bool] If False, then the domain-end might shift slightly to assure that the
same stretching factor is applied throughout. If set to True (default), however, the do-
main is respected absolutely. This will introduce one stretch-factor which is different
from the other stretch factors, to accommodate the restriction. This one-off factor is
between the left- and right-side of x0, or, if x1 is provided, just after x1.

Returns

hx [ndarray] Cell widths of mesh. All points are given by np.r_[xmin, xmin+np.
cumsum(hx)]

Classes

TensorMesh([h, origin]) A slightly modified discretize.TensorMesh.

TensorMesh

class emg3d.meshes.TensorMesh(h=None, origin=None, **kwargs)
Bases: discretize.tensor_mesh.TensorMesh, emg3d.meshes._TensorMesh

A slightly modified discretize.TensorMesh.

Adds a few attributes (__eq__, copy, to_dict, and from_dict) to the discretize.
TensorMesh.

Falls back to a minimal TensorMesh if discretize is not installed. Nothing fancy is possible with
the minimal TensorMesh, particularly NO plotting nor nice repr-functions.

Parameters

h [list of three ndarrays]

Cell widths in [x, y, z] directions.

x0 [tuple of length 3] Origin (x, y, z).

**Required Properties:**

* **axis_u (Vector3): Vector orientation of u-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: X**

* **axis_v (Vector3): Vector orientation of v-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: Y**

* **axis_w (Vector3): Vector orientation of w-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: Z**

* **h (a tuple of Array): h is a list containing the cell widths of the tensor mesh in each dimension., a tuple (each item is a list or numpy array of <class ‘float’> with shape (*)) with length between 1 and 3**

* **origin (Array): origin of the mesh (dim, ), a list or numpy array of <class ‘float’>, <class ‘int’> with shape (*)**

* **reference_system (String): The type of coordinate reference frame. Can take on the values cartesian, cylindrical, or spherical. Abbreviations of these are allowed., a unicode string, Default: cartesian**

Methods Summary

copy() Return a copy of the TensorMesh.
from_dict(inp) Convert dictionary into TensorMesh instance.

Continued on next page
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Table 5.9 – continued from previous page
to_dict([copy]) Store the necessary information of the TensorMesh

in a dict.

Methods Documentation

copy()
Return a copy of the TensorMesh.

classmethod from_dict(inp)
Convert dictionary into TensorMesh instance.

Parameters

inp [dict] Dictionary as obtained from TensorMesh.to_dict(). The dictionary
needs the keys hx, hy, hz, and x0.

Returns

obj [TensorMesh instance]

to_dict(copy=False)
Store the necessary information of the TensorMesh in a dict.

5.12.2 emg3d.models Module

Everything to create model-properties for the multigrid solver.

Classes

Model(grid[, property_x, property_y, . . . ]) Create a model instance.
VolumeModel(grid, model, sfield) Return a volume-averaged version of provided model.

Model

class emg3d.models.Model(grid, property_x=1.0, property_y=None, property_z=None,
mu_r=None, epsilon_r=None, mapping=’Resistivity’, **kwargs)

Bases: object

Create a model instance.

Class to provide model parameters (x-, y-, and z-directed properties [resistivity or conductivity; linear or
on log_10/log_e-scale], electric permittivity and magnetic permeability) to the solver. Relative magnetic
permeability 𝜇r is by default set to one and electric permittivity 𝜀r is by default set to zero, but they can also
be provided (isotropically). Keep in mind that the multigrid method as implemented in emg3d only works
for the diffusive approximation. As soon as the displacement-part in the Maxwell’s equations becomes too
dominant it will fail (high frequencies or very high electric permittivity).

Parameters

grid [TensorMesh] Grid on which to apply model.

property_{x;y;z} [float or ndarray; default to 1.] Material property in x-, y-, and z-
directions. If ndarray, they must have the shape of grid.vnC (F-ordered) or grid.nC.

By default, property refers to electrical resistivity. However, this can be changed with
an appropriate map. For more info, see the description of the parameter mapping. The
internals of emg3d work, irrelevant of the map, with electrical conductivities.

Resistivities and conductivities have to be bigger than zero and smaller than infinity (if
provided on a linear scale; not on logarithmic scales).
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mu_r [None, float, or ndarray] Relative magnetic permeability (isotropic). If ndarray it
must have the shape of grid.vnC (F-ordered) or grid.nC. Default is None, which corre-
sponds to 1., but avoids the computation of zeta. Magnetic permeability has to be bigger
than zero and smaller than infinity.

epsilon_r [None, float, or ndarray] Relative electric permittivity (isotropic). If ndarray
it must have the shape of grid.vnC (F-ordered) or grid.nC. The displacement part is
completely neglected (diffusive approximation) if set to None, which is the default.
Electric permittivity has to be bigger than zero and smaller than infinity.

mapping [str] Defines what type the input property_{x;y;z}-values correspond to. By de-
fault, they represent resistivities (Ohm.m). The implemented types are:

• ‘Conductivity’; 𝜎 (S/m),

• ‘LgConductivity’; log_10(𝜎),

• ‘LnConductivity’; log_e(𝜎),

• ‘Resistivity’; 𝜌 (Ohm.m); Default,

• ‘LgResistivity’; log_10(𝜌),

• ‘LnResistivity’; log_e(𝜌).

Attributes Summary

epsilon_r Electric permittivity.
mu_r Magnetic permeability.
property_x Property in x-direction.
property_y Property in y-direction.
property_z Property in z-direction.

Methods Summary

copy() Return a copy of the Model.
from_dict(inp) Convert the dictionary into a Model instance.
interpolate2grid(grid, new_grid, . . . ) Interpolate Model located on grid to new_grid.
to_dict([copy]) Store the necessary information of the Model in a

dict.

Attributes Documentation

epsilon_r
Electric permittivity.

mu_r
Magnetic permeability.

property_x
Property in x-direction.

property_y
Property in y-direction.

property_z
Property in z-direction.
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Methods Documentation

copy()
Return a copy of the Model.

classmethod from_dict(inp)
Convert the dictionary into a Model instance.

Parameters

inp [dict] Dictionary as obtained from Model.to_dict(). The dictionary needs the
keys property_x, property_y, property_z, mu_r, epsilon_r, vnC, and mapping.

Returns

obj [Model instance]

interpolate2grid(grid, new_grid, **grid2grid_opts)
Interpolate Model located on grid to new_grid.

Parameters

grid, new_grid [TensorMesh] Input and output model grids; emg3d.meshes.
TensorMesh instances.

grid2grid_opts [dict] Passed through to maps.grid2grid(). Defaults are
method=’volume’, log=True, and extrapolate=True.

Returns

NewModel [Model] New Model instance on new_grid.

to_dict(copy=False)
Store the necessary information of the Model in a dict.

VolumeModel

class emg3d.models.VolumeModel(grid, model, sfield)
Bases: object

Return a volume-averaged version of provided model.

Takes a Model instance and returns the volume averaged values. This is used by the solver internally.

𝜂{𝑥,𝑦,𝑧} = −𝑉 i𝜔𝜇0

(︁
𝜌−1
{𝑥,𝑦,𝑧} + i𝜔𝜀

)︁
𝜁 = 𝑉 𝜇−1

r

Parameters

grid [TensorMesh] Grid on which to apply model.

model [Model] Model to transform to volume-averaged values.

sfield [SourceField] A VolumeModel is frequency-dependent. The frequency-information
is taken from the provided source filed.

Attributes Summary

eta_x eta in x-direction.
eta_y eta in y-direction.
eta_z eta in z-direction.
zeta zeta.
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Methods Summary

calculate_eta(name, grid, model, field) eta: volume multiplied with conductivity.
calculate_zeta(name, grid, model) zeta: volume divided by mu_r.

Attributes Documentation

eta_x
eta in x-direction.

eta_y
eta in y-direction.

eta_z
eta in z-direction.

zeta
zeta.

Methods Documentation

static calculate_eta(name, grid, model, field)
eta: volume multiplied with conductivity.

static calculate_zeta(name, grid, model)
zeta: volume divided by mu_r.

5.12.3 emg3d.maps Module

Interpolation routines mapping grids to grids, grids to fields, and fields to grids.

Functions

grid2grid(grid, values, new_grid[, method, . . . ]) Interpolate values located on grid to new_grid.
interp3d(points, values, new_points, method, . . . ) Interpolate values in 3D either linearly or with a cubic

spline.
edges2cellaverages(ex, ey, ez, vol, out_x, . . . ) Interpolate fields defined on edges to volume-

averaged cell values.

grid2grid

emg3d.maps.grid2grid(grid, values, new_grid, method=’linear’, extrapolate=True, log=False)
Interpolate values located on grid to new_grid.

Note 1: The default method is ‘linear’, because it works with fields and model parameters. However,
recommended are ‘volume’ for model parameters and ‘cubic’ for fields.

Note 2: For model parameters with method=’volume’ the result is quite different if you provide resistivity,
conductivity, or the logarithm of any of the two. The recommended way is to provide the logarithm of
resistivity or conductivity, in which case the output of one is indeed the inverse of the output of the other.

Parameters

grid, new_grid [TensorMesh] Input and output model grids; TensorMesh instances.

values [ndarray] Model parameters; emg3d.fields.Field instance, or a particular
field (e.g. field.fx). For fields the method cannot be ‘volume’.
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method [{<’linear’>, ‘volume’, ‘cubic’}, optional] The method of interpolation to perform.
The volume averaging method ensures that the total sum of the property stays constant.

Volume averaging is only implemented for model parameters, not for fields. The method
‘cubic’ requires at least three points in any direction, otherwise it will fall back to ‘lin-
ear’.

Default is ‘linear’, because it works with fields and model parameters. However, rec-
ommended are ‘volume’ for model parameters and ‘cubic’ for fields.

extrapolate [bool] If True, points on new_grid which are outside of grid are filled by the
nearest value (if method='cubic') or by extrapolation (if method='linear').
If False, points outside are set to zero.

For method='volume' it always uses the nearest value for points outside of grid.

Default is True.

log [bool] If True, the interpolation is carried out on a log10-scale; hence the same as
10**grid2grid(grid, np.log10(values), ...). Default is False.

Returns

new_values [ndarray] Values corresponding to new_grid.

See also:

get_receiver Interpolation of model parameters or fields to (x, y, z).

interp3d

emg3d.maps.interp3d(points, values, new_points, method, fill_value, mode)
Interpolate values in 3D either linearly or with a cubic spline.

Return values corresponding to a regular 3D grid defined by points on new_points.

This is a modified version of scipy.interpolate.interpn(), using scipy.interpolate.
RegularGridInterpolator if method='linear' and a custom-wrapped version of scipy.
ndimage.map_coordinates() if method='cubic'. If speed is important then choose ‘linear’,
as it can be significantly faster.

Parameters

points [tuple of ndarray of float, with shapes ((nx, ), (ny, ) (nz, ))] The points defining the
regular grid in three dimensions.

values [array_like, shape (nx, ny, nz)] The data on the regular grid in three dimensions.

new_points [tuple (rec_x, rec_y, rec_z)] Coordinates (x, y, z) of new points.

method [{‘cubic’, ‘linear’}, optional] The method of interpolation to perform, ‘linear’ or
‘cubic’. Default is ‘cubic’ (forced to ‘linear’ if there are less than 3 points in any direc-
tion).

fill_value [float or None] Passed to scipy.interpolate.
RegularGridInterpolator if method='linear': The value to use for
points outside of the interpolation domain. If None, values outside the domain are
extrapolated.

mode [{‘constant’, ‘nearest’, ‘mirror’, ‘reflect’, ‘wrap’}] Passed to scipy.ndimage.
map_coordinates() if method='cubic': Determines how the input array is
extended beyond its boundaries.

Returns

new_values [ndarray] Values corresponding to new_points.
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edges2cellaverages

emg3d.maps.edges2cellaverages(ex, ey, ez, vol, out_x, out_y, out_z)
Interpolate fields defined on edges to volume-averaged cell values.

Parameters

ex, ey, ez [ndarray] Electric fields in x-, y-, and z-directions, as obtained from emg3d.
fields.Field.

vol [ndarray] Volumes of the grid, as obtained from emg3d.meshes.TensorMesh.

out_x, out_y, out_z [ndarray] Arrays where the results are placed (per direction).

Classes

MapConductivity() Maps 𝜎 to computational variable 𝜎 (conductivity).
MapLgConductivity() Maps log_10(𝜎) to computational variable 𝜎 (conduc-

tivity).
MapLnConductivity() Maps log_e(𝜎) to computational variable 𝜎 (conduc-

tivity).
MapResistivity() Maps 𝜌 to computational variable 𝜎 (conductivity).
MapLgResistivity() Maps log_10(𝜌) to computational variable 𝜎 (conduc-

tivity).
MapLnResistivity() Maps log_e(𝜌) to computational variable 𝜎 (conduc-

tivity).

MapConductivity

class emg3d.maps.MapConductivity
Bases: emg3d.maps._Map

Maps 𝜎 to computational variable 𝜎 (conductivity).

• forward: x = 𝜎

• backward: 𝜎 = x

Methods Summary

backward(mapped) Mapping to conductivity.
derivative_chain(gradient, mapped) Chain rule to map gradient from conductivity to

mapping space.
forward(conductivity) Conductivity to mapping.

Methods Documentation

backward(mapped)
Mapping to conductivity.

derivative_chain(gradient, mapped)
Chain rule to map gradient from conductivity to mapping space.

forward(conductivity)
Conductivity to mapping.
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MapLgConductivity

class emg3d.maps.MapLgConductivity
Bases: emg3d.maps._Map

Maps log_10(𝜎) to computational variable 𝜎 (conductivity).

• forward: x = log_10(𝜎)

• backward: 𝜎 = 10^x

Methods Summary

backward(mapped) Mapping to conductivity.
derivative_chain(gradient, mapped) Chain rule to map gradient from conductivity to

mapping space.
forward(conductivity) Conductivity to mapping.

Methods Documentation

backward(mapped)
Mapping to conductivity.

derivative_chain(gradient, mapped)
Chain rule to map gradient from conductivity to mapping space.

forward(conductivity)
Conductivity to mapping.

MapLnConductivity

class emg3d.maps.MapLnConductivity
Bases: emg3d.maps._Map

Maps log_e(𝜎) to computational variable 𝜎 (conductivity).

• forward: x = log_e(𝜎)

• backward: 𝜎 = exp(x)

Methods Summary

backward(mapped) Mapping to conductivity.
derivative_chain(gradient, mapped) Chain rule to map gradient from conductivity to

mapping space.
forward(conductivity) Conductivity to mapping.

Methods Documentation

backward(mapped)
Mapping to conductivity.

derivative_chain(gradient, mapped)
Chain rule to map gradient from conductivity to mapping space.

forward(conductivity)
Conductivity to mapping.
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MapResistivity

class emg3d.maps.MapResistivity
Bases: emg3d.maps._Map

Maps 𝜌 to computational variable 𝜎 (conductivity).

• forward: x = 𝜌 = 𝜎^-1

• backward: 𝜎 = 𝜌^-1 = x^-1

Methods Summary

backward(mapped) Mapping to conductivity.
derivative_chain(gradient, mapped) Chain rule to map gradient from conductivity to

mapping space.
forward(conductivity) Conductivity to mapping.

Methods Documentation

backward(mapped)
Mapping to conductivity.

derivative_chain(gradient, mapped)
Chain rule to map gradient from conductivity to mapping space.

forward(conductivity)
Conductivity to mapping.

MapLgResistivity

class emg3d.maps.MapLgResistivity
Bases: emg3d.maps._Map

Maps log_10(𝜌) to computational variable 𝜎 (conductivity).

• forward: x = log_10(𝜌) = log_10(𝜎^-1)

• backward: 𝜎 = 𝜌^-1 = 10^-x

Methods Summary

backward(mapped) Mapping to conductivity.
derivative_chain(gradient, mapped) Chain rule to map gradient from conductivity to

mapping space.
forward(conductivity) Conductivity to mapping.

Methods Documentation

backward(mapped)
Mapping to conductivity.

derivative_chain(gradient, mapped)
Chain rule to map gradient from conductivity to mapping space.

forward(conductivity)
Conductivity to mapping.
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MapLnResistivity

class emg3d.maps.MapLnResistivity
Bases: emg3d.maps._Map

Maps log_e(𝜌) to computational variable 𝜎 (conductivity).

• forward: x = log_e(𝜌) = log_e(𝜎^-1)

• backward: 𝜎 = 𝜌^-1 = exp(-x)

Methods Summary

backward(mapped) Mapping to conductivity.
derivative_chain(gradient, mapped) Chain rule to map gradient from conductivity to

mapping space.
forward(conductivity) Conductivity to mapping.

Methods Documentation

backward(mapped)
Mapping to conductivity.

derivative_chain(gradient, mapped)
Chain rule to map gradient from conductivity to mapping space.

forward(conductivity)
Conductivity to mapping.

5.12.4 emg3d.fields Module

Everything related to the multigrid solver that is a field: source field, electric and magnetic fields, and fields at
receivers.

Functions

get_source_field(grid, src, freq[, strength]) Return the source field.
get_receiver(grid, values, coordinates[, . . . ]) Return values corresponding to grid at coordinates.
get_receiver_response(grid, field, rec) Return the field (response) at receiver coordinates.
get_h_field(grid, model, field) Return magnetic field corresponding to provided elec-

tric field.

get_source_field

emg3d.fields.get_source_field(grid, src, freq, strength=0)
Return the source field.

The source field is given in Equation 2 in [Muld06],

𝑠𝜇0Js,

where 𝑠 = i𝜔. Either finite length dipoles or infinitesimal small point dipoles can be defined, whereas the
return source field corresponds to a normalized (1 Am) source distributed within the cell(s) it resides (can
be changed with the strength-parameter).

The adjoint of the trilinear interpolation is used to distribute the point(s) to the grid edges, which corresponds
to the discretization of a Dirac ([PlDM07]).
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Parameters

grid [TensorMesh] Model grid; a emg3d.meshes.TensorMesh instance.

src [list of floats] Source coordinates (m). There are two formats:

• Finite length dipole: [x0, x1, y0, y1, z0, z1].

• Point dipole: [x, y, z, azimuth, dip].

freq [float] Source frequency (Hz), used to compute the Laplace parameter s. Either posi-
tive or negative:

• freq > 0: Frequency domain, hence 𝑠 = −i𝜔 = −2i𝜋𝑓 (complex);

• freq < 0: Laplace domain, hence 𝑠 = 𝑓 (real).

strength [float or complex, optional] Source strength (A):

• If 0, output is normalized to a source of 1 m length, and source strength of 1 A.

• If != 0, output is returned for given source length and strength.

Default is 0.

Returns

sfield [SourceField() instance] Source field, normalized to 1 A m.

get_receiver

emg3d.fields.get_receiver(grid, values, coordinates, method=’cubic’, extrapolate=False)
Return values corresponding to grid at coordinates.

Works for electric fields as well as magnetic fields obtained with get_h_field(), and for model param-
eters.

Parameters

grid [emg3d.meshes.TensorMesh] The model grid.

values [ndarray] Field instance, or a particular field (e.g. field.fx); Model parameters.

coordinates [tuple (x, y, z)] Coordinates (x, y, z) where to interpolate values; e.g. receiver
locations.

method [str, optional] The method of interpolation to perform, ‘linear’ or ‘cubic’. Default
is ‘cubic’ (forced to ‘linear’ if there are less than 3 points in any direction).

extrapolate [bool] If True, points on new_grid which are outside of grid are filled by the
nearest value (if method='cubic') or by extrapolation (if method='linear').
If False, points outside are set to zero.

Default is False.

Returns

new_values [ndarray or utils.EMArray] Values at coordinates.

If input was a field it returns an EMArray, which is a subclassed ndarray with .pha and
.amp attributes.

If input was an entire Field instance, output is a tuple (fx, fy, fz).

See also:

grid2grid Interpolation of model parameters or fields to a new grid.

get_receiver_response Get response for arbitrarily rotated receivers.
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get_receiver_response

emg3d.fields.get_receiver_response(grid, field, rec)
Return the field (response) at receiver coordinates.

Parameters

grid [emg3d.meshes.TensorMesh] The model grid.

field [Field] The electric or magnetic field.

rec [tuple (x, y, z, azimuth, dip)] Receiver coordinates and angles (m, °).

All values can either be a scalar or having the same length as number of receivers.

Angles:

• azimuth (°): horizontal deviation from x-axis, anti-clockwise.

• dip (°): vertical deviation from xy-plane up-wards.

Returns

responses [utils.EMArray] Responses at receiver.

Note: Currently only implemented for point receivers, not for finite length dipoles.

See also:

get_receiver Get values at coordinates (fields and models).

get_h_field

emg3d.fields.get_h_field(grid, model, field)
Return magnetic field corresponding to provided electric field.

Retrieve the magnetic field H from the electric field E using Farady’s law, given by

∇×E = i𝜔𝜇H.

Note that the magnetic field in x-direction is defined in the center of the face defined by the electric field in
y- and z-directions, and similar for the other field directions. This means that the provided electric field and
the returned magnetic field have different dimensions:

E-field: x: [grid.vectorCCx, grid.vectorNy, grid.vectorNz]
y: [ grid.vectorNx, grid.vectorCCy, grid.vectorNz]
z: [ grid.vectorNx, grid.vectorNy, grid.vectorCCz]

H-field: x: [ grid.vectorNx, grid.vectorCCy, grid.vectorCCz]
y: [grid.vectorCCx, grid.vectorNy, grid.vectorCCz]
z: [grid.vectorCCx, grid.vectorCCy, grid.vectorNz]

Parameters

grid [TensorMesh] Model grid; TensorMesh instance.

model [Model] Model; Model instance.

field [Field] Electric field; Field instance.

Returns

hfield [Field] Magnetic field; Field instance.
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Classes

Field Create a Field instance with x-, y-, and z-views of the
field.

SourceField Create a Source-Field instance with x-, y-, and z-
views of the field.

Field

class emg3d.fields.Field
Bases: numpy.ndarray

Create a Field instance with x-, y-, and z-views of the field.

A Field is an ndarray with additional views of the x-, y-, and z-directed fields as attributes, stored as fx,
fy, and fz. The default array contains the whole field, which can be the electric field, the source field, or
the residual field, in a 1D array. A Field instance has additionally the property ensure_pec which, if called,
ensures Perfect Electric Conductor (PEC) boundary condition. It also has the two attributes amp and pha
for the amplitude and phase, as common in frequency-domain CSEM.

A Field can be initiated in three ways:

1. Field(grid, dtype=np.complex128): Calling it with a emg3d.meshes.TensorMesh
instance returns a Field instance of correct dimensions initiated with zeroes of data type dtype.

2. Field(grid, field): Calling it with a emg3d.meshes.TensorMesh instance and an ndar-
ray returns a Field instance of the provided ndarray, of same data type.

3. Field(fx, fy, fz): Calling it with three ndarray’s which represent the field in x-, y-, and z-
direction returns a Field instance with these views, of same data type.

Sort-order is ‘F’.

Parameters

fx_or_grid [emg3d.meshes.TensorMesh or ndarray] Either a TensorMesh instance
or an ndarray of shape grid.nEx or grid.vnEx. See explanations above. Only mandatory
parameter; if the only one provided, it will initiate a zero-field of dtype.

fy_or_field [Field or ndarray, optional] Either a Field instance or an ndarray of shape
grid.nEy or grid.vnEy. See explanations above.

fz [ndarray, optional] An ndarray of shape grid.nEz or grid.vnEz. See explanations above.

dtype [dtype, optional] Only used if fy_or_field=None and fz=None; the initiated
zero-field for the provided TensorMesh has data type dtype. Default: complex.

freq [float, optional] Source frequency (Hz), used to compute the Laplace parameter s.
Either positive or negative:

• freq > 0: Frequency domain, hence 𝑠 = −i𝜔 = −2i𝜋𝑓 (complex);

• freq < 0: Laplace domain, hence 𝑠 = 𝑓 (real).

Just added as info if provided.

Attributes Summary

ensure_pec Set Perfect Electric Conductor (PEC) boundary
condition.

field Entire field, 1D [fx, fy, fz].
freq Return frequency.

Continued on next page
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Table 5.25 – continued from previous page
fx View of the x-directed field in the x-direction (nCx,

nNy, nNz).
fy View of the field in the y-direction (nNx, nCy,

nNz).
fz View of the field in the z-direction (nNx, nNy,

nCz).
is_electric Returns True if Field is electric, False if it is mag-

netic.
smu0 Return s*mu_0; mu_0 = Magn.
sval Return s; s=iw in frequency domain; s=freq in

Laplace domain.

Methods Summary

amp() Amplitude of the electromagnetic field.
copy() Return a copy of the Field.
from_dict(inp) Convert dictionary into Field instance.
pha([deg, unwrap, lag]) Phase of the electromagnetic field.
to_dict([copy]) Store the necessary information of the Field in a

dict.

Attributes Documentation

ensure_pec
Set Perfect Electric Conductor (PEC) boundary condition.

field
Entire field, 1D [fx, fy, fz].

freq
Return frequency.

fx
View of the x-directed field in the x-direction (nCx, nNy, nNz).

fy
View of the field in the y-direction (nNx, nCy, nNz).

fz
View of the field in the z-direction (nNx, nNy, nCz).

is_electric
Returns True if Field is electric, False if it is magnetic.

smu0
Return s*mu_0; mu_0 = Magn. permeability of free space [H/m].

sval
Return s; s=iw in frequency domain; s=freq in Laplace domain.

Methods Documentation

amp()
Amplitude of the electromagnetic field.

copy()
Return a copy of the Field.

classmethod from_dict(inp)
Convert dictionary into Field instance.
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Parameters

inp [dict] Dictionary as obtained from Field.to_dict(). The dictionary needs the
keys field, freq, vnEx, vnEy, and vnEz.

Returns

obj [Field instance]

pha(deg=False, unwrap=True, lag=True)
Phase of the electromagnetic field.

Parameters

deg [bool] If True the returned phase is in degrees, else in radians. Default is False
(radians).

unwrap [bool] If True the returned phase is unwrapped. Default is True (unwrapped).

lag [bool] If True the returned phase is lag, else lead defined. Default is True (lag
defined).

to_dict(copy=False)
Store the necessary information of the Field in a dict.

SourceField

class emg3d.fields.SourceField
Bases: emg3d.fields.Field

Create a Source-Field instance with x-, y-, and z-views of the field.

A subclass of Field. Additional properties are the real-valued source vector (vector, vx, vy, vz), which
sum is always one. For a SourceField frequency is a mandatory parameter, unlike for a Field (recommended
also for Field though),

Parameters

fx_or_grid [emg3d.meshes.TensorMesh or ndarray] Either a TensorMesh instance
or an ndarray of shape grid.nEx or grid.vnEx. See explanations above. Only mandatory
parameter; if the only one provided, it will initiate a zero-field of dtype.

fy_or_field [Field or ndarray, optional] Either a Field instance or an ndarray of shape
grid.nEy or grid.vnEy. See explanations above.

fz [ndarray, optional] An ndarray of shape grid.nEz or grid.vnEz. See explanations above.

dtype [dtype, optional] Only used if fy_or_field=None and fz=None; the initiated
zero-field for the provided TensorMesh has data type dtype. Default: complex.

freq [float] Source frequency (Hz), used to compute the Laplace parameter s. Either posi-
tive or negative:

• freq > 0: Frequency domain, hence 𝑠 = −i𝜔 = −2i𝜋𝑓 (complex);

• freq < 0: Laplace domain, hence 𝑠 = 𝑓 (real).

In difference to Field, the frequency has to be provided for a SourceField.

Attributes Summary

vector Entire vector, 1D [vx, vy, vz].
vx View of the x-directed vector in the x-direction

(nCx, nNy, nNz).
Continued on next page
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Table 5.27 – continued from previous page
vy View of the vector in the y-direction (nNx, nCy,

nNz).
vz View of the vector in the z-direction (nNx, nNy,

nCz).

Attributes Documentation

vector
Entire vector, 1D [vx, vy, vz].

vx
View of the x-directed vector in the x-direction (nCx, nNy, nNz).

vy
View of the vector in the y-direction (nNx, nCy, nNz).

vz
View of the vector in the z-direction (nNx, nNy, nCz).

5.13 Surveys and Simulations

5.13.1 emg3d.surveys Module

A survey stores a set of sources, receivers, and the measured data.

Classes

Survey(name, sources, receivers, frequencies) Create a survey with sources, receivers, and data.
Dipole(name, coordinates[, electric]) Finite length dipole or point dipole.
PointDipole(name, xco, yco, zco, azm, dip, . . . ) Infinitesimal small electric or magnetic point dipole.

Survey

class emg3d.surveys.Survey(name, sources, receivers, frequencies, data=None, fixed=0,
**kwargs)

Bases: object

Create a survey with sources, receivers, and data.

A survey contains all the sources with their frequencies, receivers, and corresponding data.

Underlying the survey-class is an xarray, which is basically a regular ndarray with axis labels and more.
The module xarray is a soft dependency, and has to be installed manually to use the Survey functionality.

This class was developed with a node-based, marine CSEM survey layout in mind. It is therefore optimised
for and mostly tested with that setup. This means for a number of receivers which measure for all source
positions. The general layout of the data for such a survey is (S, R, F), where S is the number of sources, R
the number of receivers, and F the number of frequencies:

f1
Rx1 Rx2 . RxR / f2

/ .
Tx1 / fF

/
Tx2

(continues on next page)
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(continued from previous page)

.

TxS

However, the class can also be used for a CSEM streamer-style survey layout (by setting fixed=True), where
there is a moving source with one or several receivers at a fixed offset. The layout of the data is then also
(S, R, F), but here S is the number of locations of the only source, R is the number of receiver-offsets, and F
is the number of frequencies:

f1
Offs1 . OffsR / .

/ fF
TxPos1 Rx1-TP1 . RxR-TP1 /

TxPos2 Rx1-TP2 . RxR-TP2

. . . .

TxPosS Rx1-TPS . RxR-TPS

This means that even though there is only one source, there are actually S source dipoles, as each position is
treated as a different dipole. The number of receiver dipoles in this case is SxR. This setup can also be used
for airborne EM.

Parameters

name [str] Name of the survey

sources, receivers [tuple, list, or dict] Sources and receivers.

• Tuples: Coordinates in one of the two following formats:

– (x, y, z, azimuth, dip) [m, m, m, °, °];

– (x0, x1, y0, y1, z0, z1) [m, m, m, m, m, m].

Dimensions will be expanded (hence, if n dipoles, each parameter must have length
1 or n). These dipoles will be named sequential with Tx### and Rx###.

The tuple can additionally contain an additional element at the end (after dip or z1),
electric, a boolean of length 1 or n, that indicates if the dipoles are electric or mag-
netic.

• List: A list of Dipole-instances. The names of all dipoles in the list must be unique.

• Dictionary: A dict of de-serialized Dipole-instances; mainly used for loading from
file.

frequencies [ndarray] Source frequencies (Hz).

data [ndarray or None] The observed data (dtype=np.complex128); must have shape (nsrc,
nrec, nfreq) or, if fixed=True, (nsrc, noff, nfreq). If None, it will be initiated with NaN’s.

fixed [bool] Node-based CSEM survey (fixed=False; default) or streamer-type CSEM sur-
vey (fixed=True). In the streamer-type survey, the number of receivers supplied must
be a multiple of the source positions. In this case, the receivers are grouped into offsets.

noise_floor, relative_error [float] Noise floor and relative error of the data. Default to
None. See Survey.standard_deviation for more info.
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std [ndarray or None] Standard deviation of the data, same shape as data. Default to None.
See Survey.standard_deviation for more info.

Attributes Summary

data Data, a xarray.DataSet instance.
frequencies Frequency array.
noise_floor Returns the noise floor of the data.
observed Returns the observed data.
rec_coords Return receiver coordinates.
receivers Receiver dict containing all receiver dipoles.
relative_error Returns the relative error of the data.
shape Return nsrc x nrec x nfreq.
size Return actual data size (does NOT equal nsrc x

nrec x nfreq).
sources Source dict containing all source dipoles.
src_coords Return source coordinates.
standard_deviation Returns the standard deviation of the data.

Methods Summary

copy() Return a copy of the Survey.
from_dict(inp) Convert dictionary into Survey instance.
from_file(fname[, name]) Load Survey from a file.
to_dict([copy]) Store the necessary information of the Survey in a

dict.
to_file(fname[, name]) Store Survey to a file.

Attributes Documentation

data
Data, a xarray.DataSet instance.

Contains the xarray.DataArray element .observed, but other data can be added. E.g., emg3d.
simulations.Simulation adds the synthetic array.

frequencies
Frequency array.

noise_floor
Returns the noise floor of the data.

See emg3d.surveys.Survey.standard_deviation for more info.

observed
Returns the observed data.

rec_coords
Return receiver coordinates.

The returned format is (x, y, z, azm, dip), a tuple of 5 tuples. If fixed=True it returns a dict with the
offsets as keys, and for each offset it returns the corresponding receiver coordinates as just outlined.

receivers
Receiver dict containing all receiver dipoles.

relative_error
Returns the relative error of the data.

See emg3d.surveys.Survey.standard_deviation for more info.
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shape
Return nsrc x nrec x nfreq.

Note that not all source-receiver-frequency pairs do actually have data. Check size to see how many
data points there are.

size
Return actual data size (does NOT equal nsrc x nrec x nfreq).

sources
Source dict containing all source dipoles.

src_coords
Return source coordinates.

The returned format is (x, y, z, azm, dip), a tuple of 5 tuples.

standard_deviation
Returns the standard deviation of the data.

The standard deviation can be set by providing an array of the same dimension as the data itself:

survey.standard_deviation = ndarray # (nsrc, nrec, nfreq)

Alternatively, one can set the noise_floor 𝜖nf and the relative_error 𝜖r:

survey.noise_floor = float or ndarray # (> 0 or None)
survey.relative error = float or ndarray # (> 0 or None)

They must be either floats, or three-dimensional arrays of shape ([nsrc or 1], [nrec or
1], [nfreq or 1]); dimensions of one will be broadcasted to the corresponding size. E.g.,
for a dataset of arbitrary amount of sources and receivers with three frequencies you can de-
fine a purely frequency-dependent relative error via relative_error=np.array([err_f1,
err_f2, err_f3])[None, None, :].

The standard deviation 𝜍𝑖 of observation 𝑑𝑖 is then given in terms of the noise floor 𝜖nf;𝑖 and the relative
error 𝜖re;𝑖 by

𝜍𝑖 =
√︁
𝜖2nf;𝑖 + (𝜖re;𝑖|𝑑𝑖|)2 . (5.35)

Note that a set standard deviation is prioritized over potentially also defined noise floor and relative
error. To use the noise floor and the relative error after defining standard deviation directly you would
have to reset it like

survey.standard_deviation = None

after which Equation (5.35) would be used again.

Methods Documentation

copy()
Return a copy of the Survey.

classmethod from_dict(inp)
Convert dictionary into Survey instance.

Parameters

inp [dict] Dictionary as obtained from Survey.to_dict(). The dictionary needs
the keys name, sources, receivers frequencies, data, and fixed.

Returns

obj [Survey instance]
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classmethod from_file(fname, name=’survey’, **kwargs)
Load Survey from a file.

Parameters

fname [str] File name including extension. Used backend depends on the file exten-
sions:

• ‘.npz’: numpy-binary

• ‘.h5’: h5py-binary (needs h5py)

• ‘.json’: json

name [str] Name under which the survey is stored within the file.

kwargs [Keyword arguments, optional] Passed through to io.load().

Returns

survey [Survey] The survey that was stored in the file.

to_dict(copy=False)
Store the necessary information of the Survey in a dict.

to_file(fname, name=’survey’, **kwargs)
Store Survey to a file.

Parameters

fname [str] File name inclusive ending, which defines the used data format. Imple-
mented are currently:

• .h5 (default): Uses h5py to store inputs to a hierarchical, compressed binary hdf5
file. Recommended file format, but requires the module h5py. Default format if
ending is not provided or not recognized.

• .npz: Uses numpy to store inputs to a flat, compressed binary file. Default format if
h5py is not installed.

• .json: Uses json to store inputs to a hierarchical, plain text file.

name [str] Name under which the survey is stored within the file.

kwargs [Keyword arguments, optional] Passed through to io.save().

Dipole

class emg3d.surveys.Dipole(name, coordinates, electric=True, **kwargs)
Bases: emg3d.surveys.PointDipole

Finite length dipole or point dipole.

Expansion of the basic PointDipole to allow for finite length dipoles, and to provide coordinate inputs
in the form of (x, y, z, azimuth, dip) or (x0, x1, y0, y1, z0, z1).

Adds attributes is_finite, electrode1, electrode2, length, and coordinates to the class.

For point dipoles, this gives it a length of unity (1 m), takes its coordinates as center, and computes the two
electrode positions.

For finite length dipoles it sets the coordinates to its center and computes its length, azimuth, and dip.

Finite length dipoles and point dipoles have therefore the exactly same signature, and can only be distin-
guished by the attribute is_finite.

Parameters

name [str] Dipole name.

coordinates [tuple of floats] Source coordinates, one of the following:
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• (x0, x1, y0, y1, z0, z1): finite length dipole,

• (x, y, z, azimuth, dip): point dipole.

The coordinates x, y, and z are in meters (m), the azimuth and dip in degree (°).

Angles (coordinate system is right-handed with positive z up; East-North-Depth):

• azimuth (°): horizontal deviation from x-axis, anti-clockwise.

• +/-dip (°): vertical deviation from xy-plane down/up-wards.

electric [bool] Electric dipole if True, magnetic dipole otherwise. Default is True.

Attributes Summary

azm
dip
electric
name
xco
yco
zco

Attributes Documentation

azm

dip

electric

name

xco

yco

zco

PointDipole

class emg3d.surveys.PointDipole(name: str, xco: float, yco: float, zco: float, azm: float, dip:
float, electric: bool)

Bases: object

Infinitesimal small electric or magnetic point dipole.

Defined by its coordinates (xco, yco, zco), its azimuth (azm), its dip, and its type (electric).

Not meant to be used directly. Use Dipole instead.

Parameters

name [str] Dipole name.

xco, yco, zco [float] x-, y-, and z-coordinates (m).

azm, dip [float] Angles (in degrees °); coordinate system is right-handed with positive z
up; East-North-Depth:

• azimuth (°): horizontal deviation from x-axis, anti-clockwise.

• +/-dip (°): vertical deviation from xy-plane down/up-wards.

electric [bool] Electric dipole if True, magnetic dipole otherwise. Default is True.
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Attributes Summary

azm
dip
electric
name
xco
yco
zco

Attributes Documentation

azm

dip

electric

name

xco

yco

zco

5.13.2 emg3d.simulations Module

A simulation is the computation (modelling) of electromagnetic responses of a resistivity (conductivity) model for
a given survey.

In its heart, emg3d is a multigrid solver for 3D electromagnetic diffusion with tri-axial electrical anisotropy. How-
ever, it contains most functionalities to also act as a modeller. The simulation module combines all these things by
combining surveys with computational meshes and fields and providing high-level, specialised modelling routines.

Functions

expand_grid_model(grid, model, expand, inter-
face)

Expand model and grid according to provided param-
eters.

estimate_gridding_opts(gridding_opts,
grid, . . . )

Estimate parameters for automatic gridding.

expand_grid_model

emg3d.simulations.expand_grid_model(grid, model, expand, interface)
Expand model and grid according to provided parameters.

Expand the grid and corresponding model in positive z-direction from the end of the grid to the interface
with expand[0], and a 100 m thick layer above the interface with expand[1].

The provided properties are taken as isotropic; mu_r and epsilon_r are expanded with ones, if necessary.

The interface is usually the sea-surface, and expand is therefore [property_sea,
property_air].

Parameters

grid [emg3d.meshes.TensorMesh] The grid.

model [emg3d.models.Model] The model.
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expand [list] The two properties below and above the interface: [below_interface,
above_interface].

interface [float] Interface between the two properties in expand.

Returns

grid [emg3d.meshes.TensorMesh] Expanded grid.

model [emg3d.models.Model] Expanded model.

estimate_gridding_opts

emg3d.simulations.estimate_gridding_opts(gridding_opts, grid, model, survey, in-
put_nCz=None)

Estimate parameters for automatic gridding.

Automatically determines the required gridding options from the provided grid, model, and survey, if they
are not provided in gridding_opts.

The dict gridding_opts can contain any input parameter taken by emg3d.meshes.
construct_mesh(), see the corresponding documentation for more details with regards to the
possibilities.

Different keys of gridding_opts are treated differently:

• The following parameters are estimated from the model if not provided:

– properties: volume averages (of x, y, and z-directed properties) on log10 scale of the outer-
most layer in a given direction.

– mapping: taken from model.

• The following parameters are estimated from the survey if not provided:

– frequency: average (on log10-scale) of all frequencies.

– center: center of all sources.

– domain: from vector, if provided, or

* in x/y-directions: extent of sources and receivers plus 10% on each side, ensuring ratio of 3.

* in z-direction: extent of sources and receivers, ensuring ratio of 2 to horizontal dimension;
1/10 tenth up, 9/10 down.

The ratio means that it is enforced that the survey dimension in x or y-direction is not smaller than
a third of the survey dimension in the other direction. If not, the smaller dimension is expanded
symmetrically. Similarly in the vertical direction, which must be at least half the dimension of the
maximum horizontal dimension or 5 km, whatever is smaller. Otherwise it is expanded in a ratio
of 9 parts downwards, one part upwards.

• The following parameter is taken from the grid if provided as a string:

– vector: This is the only real “difference” to the inputs of emg3d.meshes.
construct_mesh(). The normal input is accepted, but it can also be a string contain any
combination of ‘x’, ‘y’, and ‘z’. All directions contained in this string are then taken from the
provided grid. E.g., if gridding_opts['vector']='xz' it will take the x- and z-directed
vectors from the grid.

• The following parameters are simply passed along if they are provided, nothing is done otherwise:

– vector

– stretching

– seasurface

– cell_numbers
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– lambda_factor

– lambda_from_center

– max_buffer

– min_width_limits

– min_width_pps

– verb

Parameters

gridding_opts [dict] Containing input parameters to provide to emg3d.meshes.
construct_mesh(). See the corresponding documentation and the explanations
above.

grid [emg3d.meshes.TensorMesh] The grid.

model [emg3d.models.Model] The model.

survey [emg3d.surveys.Survey] The survey.

input_nCz [int, optional] If expand_grid_model() was used, input_nCz corresponds
to the original grid.nCz.

Returns

gridding_opts [dict] Dict to provide to emg3d.meshes.construct_mesh().

Classes

Simulation(name, survey, grid, model[, . . . ]) Create a simulation for a given survey on a given
model.

Simulation

class emg3d.simulations.Simulation(name, survey, grid, model, max_workers=4, grid-
ding=’single’, **kwargs)

Bases: object

Create a simulation for a given survey on a given model.

A simulation can be used to compute responses for an entire survey, hence for an arbitrary amount of
sources, receivers, and frequencies. The responses can be computed in parallel over sources and frequencies.
It can also be used to compute the misfit with the data and to compute the gradient of the misfit function.

The computational grid(s) can either be provided, or automatic gridding can be used; see the description of
the parameters gridding and gridding_opts for more details.

Warning: The automatic gridding does its best to generate meshes that are suitable for the provided
model and survey. However, CSEM spans a wide range of acquisition layouts, and frequencies as
well as conductivities or resistivities span many orders of magnitude. This makes it hard to have a
function that fits all purposes. Check the meshes with your expert knowledge. Also, the automatic
gridding is conservative in its estimate, in order to be on the save side (correct results over speed).
This means, however, that often smaller grids could be used by providing the appropriate options in
gridding_opts.

Note: The Simulation-class has currently a few limitations:

• survey.fixed: must be False;
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• sources and receivers must be electric;

Parameters

survey [emg3d.surveys.Survey] The survey layout, containing sources, receivers,
frequencies, and optionally the measured data.

The survey-data will be modified in place. Provide survey.copy() if you want to avoid
this.

grid [emg3d.meshes.TensorMesh] The grid. See emg3d.meshes.TensorMesh.

model [emg3d.models.Model] The model. See emg3d.models.Model.

gridding [str, optional] Method how the computational grids are computed. Default is
‘single’. The different methods are:

• ‘same’: Same grid as for the input model.

• ‘single’: A single grid for all sources and frequencies.

• ‘frequency’: Frequency-dependent grids.

• ‘source’: Source-dependent grids.

• ‘both’: Frequency- and source-dependent grids.

• ‘input’: Same as ‘single’, but instead of automatically generate the mesh it has to be
provided in gridding_opts.

• ‘dict’: Same as ‘both’, but instead of automatically generate the meshes they have to
be provided as a dict[source][frequency] in gridding_opts.

See the parameter gridding_opts for more details.

gridding_opts [dict or TensorMesh, optional] Input format depends on gridding:

• ‘same’: Nothing, gridding_opts is not permitted.

• ‘single’, ‘frequency’, ‘source’, ‘both’: Described below.

• ‘input’: A emg3d.meshes.TensorMesh.

• ‘dict’: Dictionary of the format dict[source][frequency] containing a
emg3d.meshes.TensorMesh for each source-frequency pair.

The dict in the case of ‘single’, ‘frequency’, ‘source’, ‘both’ is passed to emg3d.
meshes.construct_mesh(); consult the corresponding documentation for more
information. Parameters that are not provided are estimated from the model, grid, and
survey using estimate_gridding_opts(), which documentation contains more
information too.

There are two notably differences to the parameters described in emg3d.meshes.
construct_mesh():

• vector: besides the normal possibility it can also be a string containing one or
several of ‘x’, ‘y’, and ‘z’. In these cases the corresponding dimension of the input
mesh is provided as vector. See estimate_gridding_opts().

• expand: in the format of [property_sea, property_air]; if provided, the
input model is expanded up to the seasurface with sea water, and an air layer is added.
The actual height of the seasurface can be defined with the key seasurface. See
expand_grid_model().

solver_opts [dict, optional] Passed through to emg3d.solver.solve(). The dict can
contain any parameter that is accepted by the emg3d.solver.solve() except for
grid, model, sfield, and efield. If not provided the following defaults are used:

• sslsolver=True;

90 Chapter 5. License information



emg3d Documentation, Release 0.14.3

• semicoarsening=True;

• linerelaxation=True;

• verb=0 (yet warnings are capture and shown).

Note that these defaults are different from the defaults in emg3d.solver.solve().
The defaults chosen here will be slower in many cases, but they are the most robust
combination at which you can throw most things.

max_workers [int] The maximum number of processes that can be used to execute the
given calls. Default is 4.

verb [int; optional] Level of verbosity. Default is 1.

• -1: Error.

• 0: Warning.

• 1: Info.

• 2: Debug.

Attributes Summary

data Shortcut to survey.data.
gradient Return the gradient of the misfit function.
misfit Return the misfit function.

Methods Summary

clean([what]) Clean part of the data base.
compute([observed]) Compute efields asynchronously for all sources

and frequencies.
copy([what]) Return a copy of the Simulation.
from_dict(inp) Convert dictionary into Simulation instance.
from_file(fname[, name]) Load Simulation from a file.
get_efield(source, frequency, **kwargs) Return electric field for given source and fre-

quency.
get_efield_info(source, frequency) Return the solver information of the corresponding

computation.
get_grid(source, frequency) Return computational grid of the given source and

frequency.
get_hfield(source, frequency, **kwargs) Return magnetic field for given source and fre-

quency.
get_model(source, frequency) Return model on the grid of the given source and

frequency.
get_sfield(source, frequency) Return source field for given source and frequency.
to_dict([what, copy]) Store the necessary information of the Simulation

in a dict.
to_file(fname[, what, name]) Store Simulation to a file.

Attributes Documentation

data
Shortcut to survey.data.

gradient
Return the gradient of the misfit function.
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See emg3d.optimize.gradient().

misfit
Return the misfit function.

See emg3d.optimize.misfit().

Methods Documentation

clean(what=’computed’)
Clean part of the data base.

Parameters

what [str] What to clean. Currently implemented:

• ‘computed’ (default): Removes all computed properties: electric and magnetic
fields and responses at receiver locations.

• ‘keepresults’: Removes everything except for the responses at receiver locations.

• ‘all’: Removes everything (leaves it plain as initiated).

compute(observed=False, **kwargs)
Compute efields asynchronously for all sources and frequencies.

Parameters

observed [bool] If True, it stores the current result also as observed model. This is usu-
ally done for pure forward modelling (not inversion). It will as such be stored within
the survey. If the survey has either relative_error or noise_floor, random Gaussian
noise with std will be added to the data.observed (not to data.synthetic). Also, data
below the noise floor will be set to NaN.

min_offset [float] Default is 0.0. Data in data.observed where the offset < min_offset
are set to NaN.

copy(what=’computed’)
Return a copy of the Simulation.

See to_file for more information regarding what.

classmethod from_dict(inp)
Convert dictionary into Simulation instance.

Parameters

inp [dict] Dictionary as obtained from Simulation.to_dict().

Returns

obj [Simulation instance]

classmethod from_file(fname, name=’simulation’, **kwargs)
Load Simulation from a file.

Parameters

fname [str] File name including extension. Used backend depends on the file exten-
sions:

• ‘.npz’: numpy-binary

• ‘.h5’: h5py-binary (needs h5py)

• ‘.json’: json

name [str] Name under which the simulation is stored within the file.

kwargs [Keyword arguments, optional] Passed through to emg3d.io.load().
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Returns

simulation [Simulation] The simulation that was stored in the file.

get_efield(source, frequency, **kwargs)
Return electric field for given source and frequency.

get_efield_info(source, frequency)
Return the solver information of the corresponding computation.

get_grid(source, frequency)
Return computational grid of the given source and frequency.

get_hfield(source, frequency, **kwargs)
Return magnetic field for given source and frequency.

get_model(source, frequency)
Return model on the grid of the given source and frequency.

get_sfield(source, frequency)
Return source field for given source and frequency.

to_dict(what=’computed’, copy=False)
Store the necessary information of the Simulation in a dict.

See to_file for more information regarding what.

to_file(fname, what=’computed’, name=’simulation’, **kwargs)
Store Simulation to a file.

Parameters

fname [str] File name inclusive ending, which defines the used data format. Imple-
mented are currently:

• .h5 (default): Uses h5py to store inputs to a hierarchical, compressed binary hdf5
file. Recommended file format, but requires the module h5py. Default format if
ending is not provided or not recognized.

• .npz: Uses numpy to store inputs to a flat, compressed binary file. Default format if
h5py is not installed.

• .json: Uses json to store inputs to a hierarchical, plain text file.

what [str] What to store. Currently implemented:

• ‘computed’ (default): Stores all computed properties: electric fields and responses
at receiver locations.

• ‘results’: Stores only the response at receiver locations.

• ‘all’: Stores everything.

• ‘plain’: Only stores the plain Simulation (as initiated).

name [str] Name under which the survey is stored within the file.

kwargs [Keyword arguments, optional] Passed through to emg3d.io.save().

5.14 Optimize

5.14.1 emg3d.optimize Module

Inversion

Functionalities related to optimization (inversion), e.g., misfit function, gradient of the misfit function, or data-
and depth-weighting.
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Currently it follows the implementation of [PlMu08], using the adjoint-state technique for the gradient.

Functions

gradient(simulation) Compute the discrete gradient using the adjoint-state
method.

misfit(simulation) Return the misfit function.

gradient

emg3d.optimize.gradient(simulation)
Compute the discrete gradient using the adjoint-state method.

The discrete gradient for a single source at a single frequency is given by Equation (10) in [PlMu08],
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where the grid notation ({𝑘, 𝑙,𝑚} and its {+1/2} equivalents) have been omitted for brevity (except for the
sum symbols).

Note: The gradient is currently implemented only for electric sources and receivers; only for isotropic
models; and not for electric permittivity nor magnetic permeability.

Parameters

simulation [emg3d.simulations.Simulation] The simulation.

Returns

grad [ndarray] Adjoint-state gradient (same shape as simulation.model).

misfit

emg3d.optimize.misfit(simulation)
Return the misfit function.

The data misfit or weighted least-squares functional using an 𝑙2 norm is given by

𝜑 =
1

2
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𝑓

∑︁
𝑠
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{︂⃦⃦⃦
𝑊𝑠,𝑟,𝑓

(︁
dpred
𝑠,𝑟,𝑓 − dobs

𝑠,𝑟,𝑓

)︁⃦⃦⃦2}︂
+ 𝑅 . (5.36)

Here, 𝑓, 𝑠, 𝑟 stand for frequency, source, and receiver, respectively; dobs are the observed electric and mag-
netic data, and dpred are the synthetic electric and magnetic data. Finally, 𝑅 is a regularization term.

The data weight of observation 𝑑𝑖 is given by 𝑊𝑖 = 𝜍−1
𝑖 , where 𝜍𝑖 is the standard deviation of the observation

(see emg3d.surveys.Survey.standard_deviation).

Note: This is an early implementation of the misfit function. Currently not yet implemented are:

• Magnetic data;

• Regularization term.

Parameters

simulation [emg3d.simulations.Simulation] The simulation.
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Returns

misfit [float] Value of the misfit function.

5.15 I/O and Utils

5.15.1 emg3d.io Module

Utility functions for writing and reading data.

Functions

save(fname, **kwargs) Save surveys, meshes, models, fields, and more to
disk.

load(fname, **kwargs) Load meshes, models, fields, and other data from disk.

save

emg3d.io.save(fname, **kwargs)
Save surveys, meshes, models, fields, and more to disk.

Serialize and save data to disk in different formats (see parameter description of fname for the supported
file formats). The main emg3d-classes (type emg3d.io.KNOWN_CLASSES to get a list) can be collected in
corresponding root-folders by setting collect_classes=True.

Any other (non-emg3d) object can be added too, as long as it knows how to serialize itself.

The serialized instances will be de-serialized if loaded with load().

Parameters

fname [str] File name inclusive ending, which defines the used data format. Implemented
are currently:

• .h5: Uses h5py to store inputs to a hierarchical, compressed binary hdf5 file. Recom-
mended file format, but requires the module h5py.

• .npz: Uses numpy to store inputs to a flat, compressed binary file.

• .json: Uses json to store inputs to a hierarchical, plain text file.

compression [int or str, optional] Passed through to h5py, default is ‘gzip’.

json_indent [int or None] Passed through to json, default is 2.

collect_classes [bool] If True, input data is collected in folders for the principal emg3d-
classes (type emg3d.io.KNOWN_CLASSES to get a list) and everything else collected in
a Data-folder. Defaults to False.

verb [int] If 1 (default) verbose, if 0 silent.

kwargs [Keyword arguments, optional] Data to save using its key as name. The follow-
ing instances will be properly serialized: emg3d.meshes.TensorMesh, emg3d.
fields.Field, and emg3d.models.Model and serialized again if loaded with
load(). These instances are collected in their own group if h5py is used.

Note that the provided data cannot contain the before described parameters as keys.
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load

emg3d.io.load(fname, **kwargs)
Load meshes, models, fields, and other data from disk.

Load and de-serialize emg3d.meshes.TensorMesh, emg3d.fields.Field, and emg3d.
models.Model instances and add arbitrary other data that were saved with save().

Parameters

fname [str] File name including extension. Possibilities:

• ‘.npz’: numpy-binary

• ‘.h5’: h5py-binary (needs h5py)

• ‘.json’: json

verb [int] If 1 (default) verbose, if 0 silent.

Returns

out [dict] A dictionary containing the data stored in fname; emg3d.meshes.
TensorMesh, emg3d.fields.Field, and emg3d.models.Model instances
are de-serialized and returned as instances.

5.15.2 emg3d.utils Module

Utility functions for the multigrid solver.

Classes

Fourier(time, fmin, fmax[, signal, ft, ftarg]) Time-domain CSEM computation.
Time() Class for timing (now; runtime).
Report([add_pckg, ncol, text_width, sort]) Print date, time, and version information.
EMArray Create an EM-ndarray: add amplitude <amp> and

phase <pha> methods.

Fourier

class emg3d.utils.Fourier(time, fmin, fmax, signal=0, ft=’dlf’, ftarg=None, **kwargs)
Bases: object

Time-domain CSEM computation.

Class to carry out time-domain modelling with the frequency-domain code emg3d. Instances of the class
take care of computing the required frequencies, the interpolation from coarse, limited-band frequencies to
the required frequencies, and carrying out the actual transform.

Everything related to the Fourier transform is done by utilising the capabilities of the 1D modeller
empymod. The input parameters time, signal, ft, and ftarg are passed to the function empymod.utils.
check_time() to obtain the required frequencies. The actual transform is subsequently carried out by
calling empymod.model.tem(). See these functions for more details about the exact implementations
of the Fourier transforms and its parameters. Note that also the verb-argument follows the definition in
empymod.

The mapping from computed frequencies to the frequencies required for the Fourier transform is done in
three steps:

• Data for 𝑓 > 𝑓max is set to 0+0j.

• Data for 𝑓 < 𝑓min is interpolated by adding an additional data point at a frequency of 1e-100 Hz.
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The data for this point is data.real[0]+0j, hence the real part of the lowest computed fre-
quency and zero imaginary part. Interpolation is carried out using PCHIP scipy.interpolate.
pchip_interpolate().

• Data for 𝑓min ≤ 𝑓 ≤ 𝑓max is computed with cubic spline interpolation (on a log-scale) scipy.
interpolate.InterpolatedUnivariateSpline.

Note that fmin and fmax should be chosen wide enough such that the mapping for 𝑓 > 𝑓max 𝑓 < 𝑓min does
not matter that much.

Parameters

time [ndarray] Desired times (s).

fmin, fmax [float] Minimum and maximum frequencies (Hz) to compute:

• Data for freq > fmax is set to 0+0j.

• Data for freq < fmin is interpolated, using an extra data-point at f = 1e-100 Hz, with
value data.real[0]+0j. (Hence zero imaginary part, and the lowest computed real
value.)

signal [{0, 1, -1}, optional]

Source signal, default is 0:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ft [{‘sin’, ‘cos’, ‘fftlog’}, optional] Flag to choose either the Digital Linear Filter method
(Sine- or Cosine-Filter) or the FFTLog for the Fourier transform. Defaults to ‘sin’.

ftarg [dict, optional] Depends on the value for ft:

• If ft=’dlf’:

– dlf : string of filter name in empymod.filters or the filter method itself. (De-
fault: empymod.filters.key_201_CosSin_2012())

– pts_per_dec: points per decade; (default: -1)

* If 0: Standard DLF.

* If < 0: Lagged Convolution DLF.

* If > 0: Splined DLF

• If ft=’fftlog’:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

freq_inp [array] Frequencies to use for computation. Mutually exclusive with ev-
ery_x_freq.

every_x_freq [int] Every every_x_freq-th frequency of the required frequency-range is
used for computation. Mutually exclusive with freq_calc.

Attributes Summary
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every_x_freq If set, freq_coarse is every_x_freq-frequency of
freq_req.

fmax Maximum frequency (Hz) to compute.
fmin Minimum frequency (Hz) to compute.
freq_calc Frequencies at which the model has to be com-

puted.
freq_calc_i Indices of freq_coarse which have to be computed.
freq_coarse Coarse frequency range, can be different from

freq_req.
freq_extrapolate These are the frequencies to extrapolate.
freq_extrapolate_i Indices of the frequencies to extrapolate.
freq_inp If set, freq_coarse is set to freq_inp.
freq_interpolate These are the frequencies to interpolate.
freq_interpolate_i Indices of the frequencies to interpolate.
freq_req Frequencies required to carry out the Fourier trans-

form.
ft Type of Fourier transform.
ftarg Fourier transform arguments.
signal Signal in time domain {0, 1, -1}.
time Desired times (s).

Methods Summary

fourier_arguments(ft, ftarg) Set Fourier type and its arguments.
freq2time(fdata, off) Compute corresponding time-domain signal.
interpolate(fdata) Interpolate from computed data to required data.

Attributes Documentation

every_x_freq
If set, freq_coarse is every_x_freq-frequency of freq_req.

fmax
Maximum frequency (Hz) to compute.

fmin
Minimum frequency (Hz) to compute.

freq_calc
Frequencies at which the model has to be computed.

freq_calc_i
Indices of freq_coarse which have to be computed.

freq_coarse
Coarse frequency range, can be different from freq_req.

freq_extrapolate
These are the frequencies to extrapolate.

In fact, it is dow via interpolation, using an extra data-point at f = 1e-100 Hz, with value
data.real[0]+0j. (Hence zero imaginary part, and the lowest computed real value.)

freq_extrapolate_i
Indices of the frequencies to extrapolate.

freq_inp
If set, freq_coarse is set to freq_inp.
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freq_interpolate
These are the frequencies to interpolate.

If freq_req is equal freq_coarse, then this is eual to freq_calc.

freq_interpolate_i
Indices of the frequencies to interpolate.

If freq_req is equal freq_coarse, then this is eual to freq_calc_i.

freq_req
Frequencies required to carry out the Fourier transform.

ft
Type of Fourier transform. Set via fourier_arguments(ft, ftarg).

ftarg
Fourier transform arguments. Set via fourier_arguments(ft, ftarg).

signal
Signal in time domain {0, 1, -1}.

time
Desired times (s).

Methods Documentation

fourier_arguments(ft, ftarg)
Set Fourier type and its arguments.

freq2time(fdata, off)
Compute corresponding time-domain signal.

Carry out the actual Fourier transform.

Parameters

fdata [ndarray] Frequency-domain data corresponding to freq_calc.

off [float] Corresponding offset (m).

Returns

tdata [ndarray] Time-domain data corresponding to Fourier.time.

interpolate(fdata)
Interpolate from computed data to required data.

Parameters

fdata [ndarray] Frequency-domain data corresponding to freq_calc.

Returns

full_data [ndarray] Frequency-domain data corresponding to freq_req.

Time

class emg3d.utils.Time
Bases: object

Class for timing (now; runtime).

Attributes Summary
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elapsed Return runtime in seconds since time zero.
now Return string of current time.
runtime Return string of runtime since time zero.
t0 Return time zero of this class instance.

Attributes Documentation

elapsed
Return runtime in seconds since time zero.

now
Return string of current time.

runtime
Return string of runtime since time zero.

t0
Return time zero of this class instance.

Report

class emg3d.utils.Report(add_pckg=None, ncol=3, text_width=80, sort=False)
Bases: scooby.report.Report

Print date, time, and version information.

Use scooby to print date, time, and package version information in any environment (Jupyter notebook,
IPython console, Python console, QT console), either as html-table (notebook) or as plain text (anywhere).

Always shown are the OS, number of CPU(s), numpy, scipy, emg3d, numba, sys.version, and time/date.

Additionally shown are, if they can be imported, IPython and matplotlib. It also shows MKL information,
if available.

All modules provided in add_pckg are also shown.

Note: The package scooby has to be installed in order to use Report: pip install scooby.

Parameters

add_pckg [packages, optional] Package or list of packages to add to output information
(must be imported beforehand).

ncol [int, optional] Number of package-columns in html table (no effect in text-version);
Defaults to 3.

text_width [int, optional] The text width for non-HTML display modes

sort [bool, optional] Sort the packages when the report is shown

Examples

>>> import pytest
>>> import dateutil
>>> from emg3d import Report
>>> Report() # Default values
>>> Report(pytest) # Provide additional package
>>> Report([pytest, dateutil], ncol=5) # Set nr of columns
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EMArray

class emg3d.utils.EMArray
Bases: numpy.ndarray

Create an EM-ndarray: add amplitude <amp> and phase <pha> methods.

Parameters

data [array] Data to which to add .amp and .pha attributes.

Examples

>>> import numpy as np
>>> from empymod.utils import EMArray
>>> emvalues = EMArray(np.array([1+1j, 1-4j, -1+2j]))
>>> print(f"Amplitude : {emvalues.amp()}")
Amplitude : [1.41421356 4.12310563 2.23606798]
>>> print(f"Phase (rad) : {emvalues.pha()}")
Phase (rad) : [ 0.78539816 -1.32581766 -4.24874137]
>>> print(f"Phase (deg) : {emvalues.pha(deg=True)}")
Phase (deg) : [ 45. -75.96375653 -243.43494882]
>>> print(f"Phase (deg; lead) : {emvalues.pha(deg=True, lag=False)}")
Phase (deg; lead) : [-45. 75.96375653 243.43494882]

Methods Summary

amp() Amplitude of the electromagnetic field.
pha([deg, unwrap, lag]) Phase of the electromagnetic field.

Methods Documentation

amp()
Amplitude of the electromagnetic field.

pha(deg=False, unwrap=True, lag=True)
Phase of the electromagnetic field.

Parameters

deg [bool] If True the returned phase is in degrees, else in radians. Default is False
(radians).

unwrap [bool] If True the returned phase is unwrapped. Default is True (un-
wrapped).

lag [bool] If True the returned phase is lag, else lead defined. Default is True (lag
defined).

5.16 Command Line Interface

Functions related to the command-line interface (CLI) of emg3d.

Consult the CLI interface section in the documentation for more information.
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5.16.1 emg3d.cli.main Module

Entry point for the command-line interface (CLI).

Functions

main([args]) Parsing command line inputs of CLI interface.

main

emg3d.cli.main.main(args=None)
Parsing command line inputs of CLI interface.

5.16.2 emg3d.cli.parser Module

Parser for the configuration file of the command-line interface.

Functions

parse_config_file(args_dict) Read and parse the configuration file and set defaults.

parse_config_file

emg3d.cli.parser.parse_config_file(args_dict)
Read and parse the configuration file and set defaults.

Parameters

args_dict [dict] Arguments from terminal, see emg3d.cli.main().

Returns

conf [dict] Configuration-dict.

5.16.3 emg3d.cli.run Module

Functions that actually call emg3d within the CLI interface.

Functions

initiate_logger(cfg, runtime, verb) Initiate logger for CLI of emg3d.
simulation(args_dict) Run emg3d invoked by CLI.

initiate_logger

emg3d.cli.run.initiate_logger(cfg, runtime, verb)
Initiate logger for CLI of emg3d.
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simulation

emg3d.cli.run.simulation(args_dict)
Run emg3d invoked by CLI.

Run and log emg3d given the settings stored in the config file, overruled by settings passed in args_dict
(which correspond to command-line arguments).

Results are saved to files according to provided settings.

Parameters

args_dict [dict] Arguments from terminal, see emg3d.cli.main(). Parameters
passed in args_dict overrule parameters in the config.
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