

    
      
          
            
  
emg3d

Version: 0.15.3 ~ Date: 09 December 2020

A multigrid solver for 3D electromagnetic diffusion with tri-axial electrical
anisotropy. The matrix-free solver can be used as main solver or as
preconditioner for one of the Krylov subspace methods implemented in
scipy.sparse.linalg, and the governing equations are discretized on a
staggered Yee grid. The code is written completely in Python using the
NumPy/SciPy-stack, where the most time- and memory-consuming parts are sped up
through jitted numba-functions.


More information

For more information regarding installation, usage, contributing, roadmap, bug
reports, and much more, see


	Website: https://emsig.github.io,


	Documentation: https://emg3d.readthedocs.io,


	Source Code: https://github.com/emsig/emg3d,


	Examples: https://emsig.github.io/emg3d-gallery.







Features


	Multigrid solver for 3D electromagnetic (EM) diffusion with regular grids
(where source and receiver can be electric or magnetic).


	Compute the 3D EM field in the complex frequency domain or in the real
Laplace domain.


	Includes also routines to compute the 3D EM field in the time domain.


	Can be used together with the SimPEG [https://simpeg.xyz]-framework.


	Can be used as a standalone solver or as a pre-conditioner for various Krylov
subspace methods implemented in SciPy, e.g., BiCGSTAB
(scipy.sparse.linalg.bicgstab) or CGS (scipy.sparse.linalg.cgs).


	Tri-axial electrical anisotropy.


	Isotropic magnetic permeability.


	Semicoarsening and line relaxation.


	Grid-size can be anything.


	As a multigrid method it scales with the number of unknowns N and has
therefore optimal complexity O(N).







Installation

You can install emg3d either via conda (preferred):

conda install -c conda-forge emg3d





or via pip:

pip install emg3d





Minimum requirements are Python version 3.7 or higher and the modules scipy
and numba. Various other packages are recommended or required for some
advanced functionalities (xarray, discretize, matplotlib, h5py,
empymod, scooby). Consult the installation notes in the manual [https://emg3d.readthedocs.io/en/stable/usage.html#installation] for more
information regarding installation, requirements, and soft dependencies.




Citation

If you publish results for which you used emg3d, please give credit by citing
Werthmüller et al. (2019) [https://doi.org/10.21105/joss.01463]:


Werthmüller, D., W. A. Mulder, and E. C. Slob, 2019,
emg3d: A multigrid solver for 3D electromagnetic diffusion:
Journal of Open Source Software, 4(39), 1463;
DOI: 10.21105/joss.01463 [https://doi.org/10.21105/joss.01463].




All releases have a Zenodo-DOI, which can be found on 10.5281/zenodo.3229006 [https://doi.org/10.5281/zenodo.3229006].

See CREDITS for the history of the code.




License information

Copyright 2018-2020 The emg3d Developers.

Licensed under the Apache License, Version 2.0, see the LICENSE-file.













          

      

      

    

  

    
      
          
            
  
Getting started

The code emg3d ([WeMS19]) is a three-dimensional modeller for
electromagnetic (EM) diffusion as used, for instance, in controlled-source EM
(CSEM) surveys frequently applied in the search for, amongst other,
groundwater, hydrocarbons, and minerals.

The core of the code is primarily based on [Muld06], [Muld07], and [Muld08].
You can read more about the background of the code in the chapter
Credits. An introduction to the underlying theory of multigrid methods
is given in the chapter Theory, and further literature is provided in
the References.


Installation

You can install emg3d either via conda:

conda install -c conda-forge emg3d





or via pip:

pip install emg3d





Minimum requirements are Python version 3.7 or higher and the modules scipy
and numba. Various other packages are recommended or required for some
advanced functionalities, namely:


	xarray: For the Survey class (many sources and receivers at once).


	discretize: For advanced meshing tools (fancy mesh-representations and
plotting utilities).


	matplotlib: To use the plotting utilities within discretize.


	h5py: Save and load data in the HDF5 format.


	empymod: Time-domain modelling (utils.Fourier).


	scooby: For the version and system report (emg3d.Report()).




If you are new to Python we recommend using a Python distribution, which will
ensure that all dependencies are met, specifically properly compiled versions
of NumPy and SciPy; we recommend using Anaconda [https://www.anaconda.com/distribution]. If you install Anaconda you can
simply start the Anaconda Navigator, add the channel conda-forge and
emg3d will appear in the package list and can be installed with a click.

Using NumPy and SciPy with the Intel Math Kernel Library (mkl) can
significantly improve computation time. You can check if mkl is used via
conda list: The entries for the BLAS and LAPACK libraries should contain
something with mkl, not with openblas. To enforce it you might have to
create a file pinned, containing the line libblas[build=*mkl] in the
folder path-to-your-conda-env/conda-meta/.




Basic Example

Here we show a very basic example. To see some more realistic models have a
look at the gallery [https://emsig.github.io/emg3d-gallery]. This
particular example is also there, with some further explanations and examples
to show how to plot the model and the data; see «Minimum working example» [https://emsig.github.io/emg3d-gallery/gallery/tutorials/minimum_example.html].
It also contains an example without using discretize.

First, we load emg3d and discretize (to create a mesh), along with
numpy:

>>> import emg3d
>>> import discretize
>>> import numpy as np





First, we define the mesh (see discretize.TensorMesh [https://discretize.simpeg.xyz/en/master/api/generated/discretize.TensorMesh.html#discretize.TensorMesh] for more info).
In reality, this task requires some careful considerations. E.g., to avoid edge
effects, the mesh should be large enough in order for the fields to dissipate,
yet fine enough around source and receiver to accurately model them. This grid
is too small, but serves as a minimal example.

>>> grid = discretize.TensorMesh(
>>>         [[(25, 10, -1.04), (25, 28), (25, 10, 1.04)],
>>>          [(50, 8, -1.03), (50, 16), (50, 8, 1.03)],
>>>          [(30, 8, -1.05), (30, 16), (30, 8, 1.05)]],
>>>         x0='CCC')
>>> print(grid)

  TensorMesh: 49,152 cells

                      MESH EXTENT             CELL WIDTH      FACTOR
  dir    nC        min           max         min       max      max
  ---   ---  ---------------------------  ------------------  ------
   x     48       -662.16        662.16     25.00     37.01    1.04
   y     32       -857.96        857.96     50.00     63.34    1.03
   z     32       -540.80        540.80     30.00     44.32    1.05





Next we define a very simple fullspace model with
\(\rho_x=1.5\,\Omega\,\text{m}\), \(\rho_y=1.8\,\Omega\,\text{m}\), and
\(\rho_z=3.3\,\Omega\,\text{m}\). The source is an x-directed dipole at the
origin, with a 10 Hz signal of 1 A.

>>> model = emg3d.models.Model(
>>>     grid, property_x=1.5, property_y=1.8, property_z=3.3)
>>> sfield = emg3d.fields.get_source_field(
>>>     grid, src=[0, 0, 0, 0, 0], freq=10.0)





Now we can compute the electric field with emg3d:

>>> efield = emg3d.solve(grid, model, sfield, verb=4)

:: emg3d START :: 15:24:40 :: v0.13.0

   MG-cycle       : 'F'                 sslsolver : False
   semicoarsening : False [0]           tol       : 1e-06
   linerelaxation : False [0]           maxit     : 50
   nu_{i,1,c,2}   : 0, 2, 1, 2          verb      : 3
   Original grid  :  48 x  32 x  32     => 49,152 cells
   Coarsest grid  :   3 x   2 x   2     => 12 cells
   Coarsest level :   4 ;   4 ;   4

   [hh:mm:ss]  rel. error                  [abs. error, last/prev]   l s

       h_
      2h_ \                  /
      4h_  \          /\    /
      8h_   \    /\  /  \  /
     16h_    \/\/  \/    \/

   [11:18:17]   2.623e-02  after   1 F-cycles   [1.464e-06, 0.026]   0 0
   [11:18:17]   2.253e-03  after   2 F-cycles   [1.258e-07, 0.086]   0 0
   [11:18:17]   3.051e-04  after   3 F-cycles   [1.704e-08, 0.135]   0 0
   [11:18:17]   5.500e-05  after   4 F-cycles   [3.071e-09, 0.180]   0 0
   [11:18:18]   1.170e-05  after   5 F-cycles   [6.531e-10, 0.213]   0 0
   [11:18:18]   2.745e-06  after   6 F-cycles   [1.532e-10, 0.235]   0 0
   [11:18:18]   6.873e-07  after   7 F-cycles   [3.837e-11, 0.250]   0 0

   > CONVERGED
   > MG cycles        : 7
   > Final rel. error : 6.873e-07

:: emg3d END   :: 15:24:42 :: runtime = 0:00:02





So the computation required seven multigrid F-cycles and took just a bit more
than 2 seconds. It was able to coarsen in each dimension four times, where the
input grid had 49,152 cells, and the coarsest grid had 12 cells.




Related ecosystem

To create advanced meshes it is recommended to use discretize [https://discretize.simpeg.xyz] from the SimPEG framework. It also comes with
some neat plotting functionalities to plot model parameters and resulting
fields. Furthermore, it can serve as a link to use PyVista [https://docs.pyvista.org] to create nice 3D plots even within a notebook.

Projects which can be used to compare or validate the results are, e.g.,
empymod [https://emsig.github.io] for layered models or SimPEG [https://simpeg.xyz] for 3D models. It is also possible to create a
geological model with GemPy [https://www.gempy.org] and, again via
discretize, move it to emg3d to compute CSEM responses for it.

Have a look at the gallery [https://emsig.github.io/emg3d-gallery] for
many examples of how to use emg3d together with the mentioned projects and
more!




Tips and Tricks

The function emg3d.solver.solve() is the main entry point, and it takes
care whether multigrid is used as a solver or as a preconditioner (or not at
all), while the actual multigrid solver is emg3d.solver.multigrid(). Most
input parameters for emg3d.solver.solve() are sufficiently described in
its docstring. Here a few additional information.


	You can input any three-dimensional tensor mesh into emg3d. However, the
implemented multigrid technique works with the existing nodes, meaning there
are no new nodes created as coarsening is done by combining adjacent
cells. The more times the grid dimension can be divided by two the better it
is suited for MG. Ideally, the number should be dividable by two a few times
and the dimension of the coarsest grid should be a low prime number
\(p\), for which good sizes can then be computed with \(p 2^n\). Good
grid sizes (in each direction) up to 1024 are


	\(2·2^{3, 4, ..., 9}\): 16,  32,  64, 128, 256, 512, 1024,


	\(3·2^{3, 4, ..., 8}\): 24,  48,  96, 192, 384, 768,


	\(5·2^{3, 4, ..., 7}\): 40,  80, 160, 320, 640,


	\(7·2^{3, 4, ..., 7}\): 56, 112, 224, 448, 896,




and preference decreases from top to bottom row (stick to the first two or
three rows if possible). Good grid sizes in sequential order, excluding p=7:
16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 512, 640, 768,
1024. You can get this list via emg3d.meshes.good_mg_cell_nr().



	The multigrid method can be used as a solver or as a preconditioner, for
instance for BiCGSTAB. Using multigrid as a preconditioner for BiCGSTAB
together with semicoarsening and line relaxation is the most stable version,
but expensive, and therefore only recommended on highly stretched grids.
Which combination of solver is best (fastest) depends to a large extent on
the grid stretching, but also on anisotropy and general model complexity.
See «Parameter tests» [https://emsig.github.io/emg3d-gallery/gallery/tutorials/parameter_tests.html]
in the gallery for an example how to run some tests on your particular
problem.







Contributing and Roadmap

New contributions, bug reports, or any kind of feedback is always welcomed!
Have a look at the Roadmap-project [https://github.com/emsig/emg3d/projects/1] to get an idea of things that
could be implemented. The GitHub issues [https://github.com/emsig/emg3d/issues] and
PR’s [https://github.com/emsig/emg3d/pulls] are also a good starting
point. The best way for interaction is at https://github.com/emsig or by
joining the Slack channel [http://slack.simpeg.xyz] «em-x-d» of SimPEG. If
you prefer to get in touch outside of GitHub/Slack use the contact form on
https://werthmuller.org.

To install emg3d from source, you can download the latest version from GitHub
and install it in your python distribution via:

python setup.py install





Please make sure your code follows the pep8-guidelines by using, for instance,
the python module flake8, and also that your code is covered with
appropriate tests. Just get in touch if you have any doubts.




Tests and benchmarks

The modeller comes with a test suite using pytest. If you want to run the
tests, just install pytest and run it within the emg3d-top-directory.

> pytest --cov=emg3d --flake8





It should run all tests successfully. Please let us know if not!

Note that installations of em3gd via conda or pip do not have the
test-suite included. To run the test-suite you must download emg3d from
GitHub.

There is also a benchmark suite using airspeed velocity, located in the
empymod/emg3d-asv [https://github.com/emsig/emg3d-asv]-repository. The
results of my machine can be found in the empymod/emg3d-bench [https://github.com/emsig/emg3d-bench], its rendered version at
emsig.github.io/emg3d-asv [https://emsig.github.io/emg3d-asv].




License

Copyright 2018-2020 The emg3d Developers.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at


https://www.apache.org/licenses/LICENSE-2.0




Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.







          

      

      

    

  

    
      
          
            
  
Multi-what?

If you have never heard of the multigrid method before you might ask yourself
“multi-what?” The following is an intent to describe the multigrid method
without the maths; just some keywords and some figures. It is a heavily
simplified intro, using a 2D grid for simplicity. Have a look at the
Theory-section for more details. A good, four-page intro with some maths
is given by [Muld11]. More in-depth information can be found, e.g., in
[BrHM00], [Hack85], and [Wess91].

The multigrid method ([Fedo64])


	is an iterative solver;


	scales almost linearly (CPU & RAM);


	can serve as a pre-conditioner or as a solver on its own.




The main driving motivation to use multigrid is the part about linear scaling.


Matrix-free solver

The implemented multigrid method is a matrix free solver, it never constructs
the full matrix. This is how it achieves its relatively low memory consumption.
To solve the system, it solves for all fields adjacent to one node, moves then
to the next node, and so on until it reaches the last node, see Figure
1, where the red lines indicate the fields which are solved
simultaneously per step (the fields on the boundaries are never computed, as
they are assumed to be 0).


[image: Explanation of smoother]Figure 1: The multigrid solver solves by default on a node-by-node basis.



Normally, you would have to do this over and over again to achieve a good
approximate solution. multigrid typically does it only a few times per grid,
typically 2 times (one forward, one backward). This is why it is called
smoother, as it only smoothes the error, it does not solve it. The
implemented method for this is the Gauss-Seidel method.

Iterative solver which work in this matrix-free manner are typically very
fast at solving for the local problem, hence at reducing the high frequency
error, but very slow at solving the global problem, hence at reducing the
low frequency error. High and low frequency errors are meant relatively to
cell-size here.




Moving between different grids

The main thinking behind multigrid is now that we move to coarser grids. This
has two advantages:


	Fewer cells means faster computation and less memory.


	Coarser grid size transforms lower frequency error to higher frequency error,
relatively to cell size, which means faster convergence.




The implemented multigrid method simply joins two adjacent cells to get from
finer to coarser grids, see Figure 2 for an example
coarsening starting with a 16 cells by 16 cells grid.


[image: Fine to coarse grid schematic]Figure 2: Example of the implemented coarsening scheme.



There are different approaches how to cycle through different grid sizes, see
Figures 7 to 9. The
downsampling from a finer grid to a coarser grid is often termed
restriction, whereas the interpolation from a coarser grid to a finer grid
is termed prolongation.




Specialities

The convergence rate of the multigrid method suffers on severely stretched
grids or by models with strong anisotropy. Two techniques are implemented,
semicoarsening (Figure 3) and line
relaxation (Figure 4). Both require more CPU and
higher RAM per grid than the standard multigrid, but they can improve the
convergence rate, which then in turn improves the overall CPU time.


[image: Schematic of semicoarsening]Figure 3: Example of semicoarsening: The cell size is kept constant in one direction.
The direction can be alternated between iterations.




[image: Schematic of line relaxation]Figure 4: Example of line relaxation: The system is solved for all fields adjacent to
a whole line of nodes simultaneously in some direction. The direction can be
alternated between iterations.









          

      

      

    

  

    
      
          
            
  
Theory

The following provides an introduction to the theoretical foundation of the
solver emg3d. More specific theory is covered in the docstrings of many
functions, have a look at the Other functions [https://empymod.readthedocs.io/en/stable/code.html]-section or follow the links to the
corresponding functions here within the theory. If you just want to use the
solver, but do not care much about the internal functionality, then the
function emg3d.solver.solve() is the only function you will ever need. It
is the main entry point, and it takes care whether multigrid is used as a
solver or as a preconditioner (or not at all), while the actual multigrid
solver is emg3d.solver.multigrid().


Note

This section is not an independent piece of work. Most things are taken
from one of the following sources:


	[Muld06], pages 634-639:


	The Maxwell’s equations and Discretisation sections correspond with
some adjustemens and additions to pages 634-636.


	The start of The Multigrid Method corresponds roughly to page 637.


	Pages 638 and 639 are in parts reproduced in the code-docstrings of the
corresponding functions.






	[BrHM00]: This book is an excellent introduction to multigrid methods.
Particularly the Iterative Solvers section is taken to a big extent
from the book.




Please consult these original resources for more details, and refer to
them for citation purposes and not to this manual. More in-depth
information can also be found in, e.g., [Hack85] and [Wess91].




Maxwell’s equations

Maxwell’s equations in the presence of a current source
\(\mathbf{J}_\mathrm{s}\) are


(1)\[\begin{split}\partial_{t} \mathbf{B}(\mathbf{x},t) +
\nabla\times\mathbf{E}(\mathbf{x},t) &= 0 , \\
\nabla \times \mathbf{H}(\mathbf{x}, t) -
\partial_{t} \mathbf{D}(\mathbf{x}, t) &=
\mathbf{J}_{\mathrm{c}}(\mathbf{x}, t) +
\mathbf{J}_\mathrm{s}(\mathbf{x}, t) ,\end{split}\]

where the conduction current \(\mathbf{J}_\mathrm{c}\) obeys Ohm’s law,


(2)\[\mathbf{J}_{\mathrm{c}}(\mathbf{x},t) =
\sigma(\mathbf{x})\mathbf{E}(\mathbf{x},t) .\]

Here, \(\sigma(\mathbf{x})\) is the conductivity.
\(\mathbf{E}(\mathbf{x}, t)\) is the electric field and
\(\mathbf{H}(\mathbf{x}, t)\) is the magnetic field. The electric
displacement \(\mathbf{D}(\mathbf{x}, t) =
\varepsilon(\mathbf{x})\mathbf{E}(\mathbf{x}, t)\) and the magnetic induction
\(\mathbf{B}(\mathbf{x}, t) = \mu(\mathbf{x})\mathbf{H}(\mathbf{x}, t)\).
The dielectric constant or permittivity \(\varepsilon\) can be expressed as
\(\varepsilon = \varepsilon_r \varepsilon_0\), where \(\varepsilon_r\)
is the relative permittivity and \(\varepsilon_0\) is the vacuum value.
Similarly, the magnetic permeability \(\mu\) can be written as \(\mu =
\mu_r\mu_0\), where \(\mu_r\) is the relative permeability and \(\mu_0\)
is the vacuum value.

The magnetic field can be eliminated from Equation (1), yielding the
second-order parabolic system of equations,


(3)\[\varepsilon \partial_{t t} \mathbf{E} + \sigma \partial_{t} \mathbf{E} +
\nabla \times \mu^{-1} \nabla \times \mathbf{E} =
-\partial_{t} \mathbf{J}_{\mathrm{s}} .\]

To transform from the time domain to the frequency domain, we substitute


(4)\[\mathbf{E} (\mathbf{x},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}
\mathbf{\hat{E}} (\mathbf{x},\omega) e^{-\mathrm{i}\omega t}\, d\omega,\]

and use a similar representation for \(\mathbf{H}(\mathbf{x}, t)\). The
resulting system of equations is


(5)\[-s \mu_0(\sigma + s\varepsilon) \mathbf{\hat{E}} - \nabla \times
\mu_r^{-1} \nabla \times \mathbf{\hat{E}} =
s\mu_0\mathbf{\hat{J}}_s ,\]

where \(s = -\mathrm{i}\omega\). The multigrid method converges in the
case of the diffusive approximation (with its smoothing and approximation
properties), but not in the high-frequency range (at least not in the
implemented form of the multigrid method in emg3d). The code emg3d
assumes therefore the diffusive approximation, hence only low frequencies are
considered that obey \(|\omega\varepsilon| \ll \sigma\). In this case we
can set \(\varepsilon=0\), and Equation (5) simplifies to


(6)\[-s \mu_0 \sigma \mathbf{\hat{E}} - \nabla \times
\mu_r^{-1} \nabla \times \mathbf{\hat{E}} =
s\mu_0\mathbf{\hat{J}}_s ,\]

From here on, the hats are omitted. We use the perfectly electrically
conducting boundary


(7)\[\mathbf{n}\times\mathbf{E} = 0 \quad \text{and} \quad
\mathbf{n}\cdot\mathbf{H} = 0 ,
 \label{eq:sample}\]

where \(\mathbf{n}\) is the outward normal on the boundary of the domain.

The Maxwell’s equations and Ohm’s law are solved in the frequency domain.
The time-domain solution can be obtained by taking the inverse Fourier
transform.


Note

[Muld06] uses the time convention \(e^{-\mathrm{i}\omega t}\), see
Equation (4), with \(s=-\mathrm{i}\omega\). However, the
code emg3d uses the convention \(e^{\mathrm{i}\omega t}\), hence
\(s=\mathrm{i}\omega\). This is the same convention as used in
empymod, and commonly in CSEM.




Laplace domain

It is also possible to solve the problem in the Laplace domain, by
using a real value for \(s\) in Equation (6), instead of the
complex value \(-\mathrm{i}\omega\). This simplifies the problem from
complex numbers to real numbers, which accelerates the computation. It also
improves the convergence rate, as the solution is a smoother function. The
solver emg3d.solver.solve() is agnostic to the data type of the provided
source field, and can solve for real and complex problems, hence frequency and
Laplace domain. See the documentation of the functions
emg3d.fields.get_source_field() and emg3d.models.Model() to see how
you can use emg3d for Laplace-domain computations.






Discretisation

Equation (6) can be discretised by the finite-integration
technique ([Weil77], [ClWe01]). This scheme can be viewed as a finite-volume
generalization of [Yee66]’s  scheme for tensor-product Cartesian grids with
variable grid spacings. An error analysis for the constant-coefficient case
([MoSu94]) showed that both the electric and magnetic field components have
second-order accuracy.

Consider a tensor-product Cartesian grid with nodes at positions \((x_k,
y_l, z_m)\), where \(k=0, \dots, N_x, l=0, \dots, N_y\) and \(m=0,
\dots, N_z\). There are \(N_x\times N_y\times N_z\) cells having these nodes
as vertices. The cell centres are located at


(8)\[\begin{split}x_{k+1/2} &= {\textstyle \frac{1}{2}}\left(x_k + x_{k+1}\right) , \\
y_{l+1/2} &= {\textstyle \frac{1}{2}}\left(y_l + y_{l+1}\right) , \\
z_{m+1/2} &= {\textstyle \frac{1}{2}}\left(z_m + z_{m+1}\right) .\end{split}\]

The material properties, \(\sigma\) and \(\mu_\mathrm{r}\), are assumed
to be given as cell-averaged values. The electric field components are
positioned at the edges of the cells, as shown in Figure 5, in a manner similar to Yee’s scheme. The first component of the
electric field \(E_{1, k+1/2, l, m}\) should approximate the average of
\(E_1(x, y_l, z_m)\) over the edge from \(x_k\) to \(x_{k+1}\) at
given \(y_l\) and \(z_m\). Here, the average is defined as the line
integral divided by the length of the integration interval. The other
components, \(E_{2, k, l+1/2, m}\) and \(E_{3, k, l, m+1/2}\), are
defined in a similar way. Note that these averages may also be interpreted as
point values at the midpoint of edges:


(9)\[\begin{split}E_{1, k+1/2, l, m} \simeq E_1\left(x_{k+1/2}, y_{l}, z_{m}\right) , \\
E_{2, k, l+1/2, m} \simeq E_2\left(x_{k}, y_{l+1/2}, z_{m}\right) , \\
E_{3, k, l, m+1/2} \simeq E_3\left(x_{k}, y_{l}, z_{m+1/2}\right) .\end{split}\]

The averages and point-values are the same within second-order accuracy.


[image: Staggered grid sketches.]
Figure 5: (a) A grid cell with grid nodes and edge-averaged components of the electric
field. (b) The face-averaged magnetic field components that are obtained by
taking the curl of the electric field.



For the discretisation of the term \(-s\mu_0\sigma\mathbf{E}\) related to
Ohm’s law, dual volumes related to edges are introduced. For a given edge, the
dual volume is a quarter of the total volume of the four adjacent cells. An
example for \(E_1\) is shown in Figure 6(b). The
vertices of the dual cell are located at the midpoints of the cell faces.


[image: Dual volume sketches.]
Figure 6: The first electric field component \(E_{1,k,l,m}\) is located at the
intersection of the four cells shown in (a). Four faces of its dual volume
are sketched in (b). The first component of the curl of the magnetic field
should coincide with the edge on which \(E_1\) is located. The four
vectors that contribute to this curl are shown in (a). They are defined as
normals to the four faces in (a). Before computing their curl, these vectors
are interpreted as tangential components at the faces of the dual volume
shown in (b). The curl is evaluated by taking the path integral over a
rectangle of the dual volume that is obtained for constant x and by
averaging over the interval \([x_k,x_{k+1}]\).



The volume of a normal cell is defined as


(10)\[V_{k+1/2, l+1/2, m+1/2} = h_{k+1/2}^x h_{l+1/2}^y h_{m+1/2}^z ,\]

where


(11)\[\begin{split}h_{k+1/2}^x &= x_{k+1}-x_k , \\
h_{l+1/2}^y &= y_{l+1}-y_l , \\
h_{m+1/2}^z &= z_{m+1}-z_m .\end{split}\]

For an edge parallel to the x-axis on which \(E_{1, k+1/2, l, m}\) is
located, the dual volume is


(12)\[V_{k+1/2, l, m} = {\textstyle \frac{1}{4}} h_{k+1/2}^x
                  \sum_{m_2=0}^1 \sum_{m_3=0}^1
                  h_{l-1/2+m_2}^y h_{m-1/2+m_3}^z .\]

With the definitions,


(13)\[\begin{split}d_k^x &= x_{k+1/2} - x_{k-1/2} , \\
d_l^y &= y_{l+1/2} - y_{l-1/2} , \\
d_m^z &= z_{m+1/2} - z_{m-1/2} ,\end{split}\]

we obtain


(14)\[\begin{split}V_{k+1/2, l, m} &= h_{k+1/2}^x d_l^y d_m^z , \\
V_{k, l+1/2, m} &= d_k^x h_{l+1/2}^y d_m^z , \\
V_{k, l, m+1/2} &= d_k^x d_l^y h_{m+1/2}^z .\end{split}\]

Note that Equation (13) does not define \(d_k^x\), etc., at
the boundaries. We may simply take \(d^x_0 = h^x_{1/2}\) at \(k = 0\),
\(d^x_{N_x} = h^x_{N_x-1/2}\) at \(k = N_x\) and so on, or use half of
these values as was done by [MoSu94].

The discrete form of the term \(-s\mu_0\sigma\mathbf{E}\) in Equation
(6), with each component multiplied by the corresponding dual
volume, becomes \(\mathcal{S}_{k+1/2, l, m}\ E_{1, k+1/2, l, m}\),
\(\mathcal{S}_{k, l+1/2, m}\ E_{2, k, l+1/2, m}\) and
\(\mathcal{S}_{k, l, m+1/2}\ E_{3, k, l, m+1/2}\) for the first, second and
third components, respectively. Here \(\mathcal{S} = -s\mu_0\sigma V\) is
defined in terms of cell-averages. At the edges parallel to the x-axis, an
averaging procedure similar to (12) gives


(15)\[\begin{split}\mathcal{S}_{k+1/2, l, m} = &{\textstyle\frac{1}{4}}\left(
\mathcal{S}_{k+1/2, l-1/2, m-1/2} +
\mathcal{S}_{k+1/2, l+1/2, m-1/2} \right. \\ &+ \left.
\mathcal{S}_{k+1/2, l-1/2, m+1/2} +
\mathcal{S}_{k+1/2, l+1/2, m+1/2} \right) .\end{split}\]

\(\mathcal{S}_{k, l+1/2, m}\) and \(\mathcal{S}_{k, l, m+1/2}\) are
defined in a similar way.

The curl of \(\mathbf{E}\) follows from path integrals around the edges
that bound a face of a cell, drawn in Figure 5(a).
After division by the area of the faces, the result is a face-averaged value
that can be positioned at the centre of the face, as sketched in
Figure 5(b). If this result is divided by
\(\mathrm{i}\omega\mu\), the component of the magnetic field that is normal
to the face is obtained. In order to find the curl of the magnetic field, the
magnetic field components that are normal to faces are interpreted as
tangential components at the faces of the dual volumes. For \(E_1\), this
is shown in Figure 6. For the first component of
Equation (6) on the edge \((k+1/2, l, m)\) connecting
\((x_k, y_l, z_m)\) and \((x_{k+1}, y_l, z_m)\), the corresponding dual
volume comprises the set \([x_k, x_{k+1}] \times [y_{l-1/2}, y_{l+1/2}]
\times [z_{m-1/2}, z_{m+1/2}]\) having volume \(V_{k+1/2,l,m}\).

The scaling by \(\mu_r^{-1}\) at the face requires another averaging step
because the material properties are assumed to be given as cell-averaged
values. We define \(\mathcal{M} = V\mu_r^{-1}\), so


(16)\[\mathcal{M}_{k+1/2, l+1/2, m+1/2} =
h_{k+1/2}^x h_{l+1/2}^y h_{m+1/2}^z \mu_{r, k+1/2, l+1/2, m+1/2}^{-1}\]

for a given cell \((k+1/2, l+1/2, m+1/2)\). An averaging step in, for
instance, the z-direction gives


(17)\[\mathcal{M}_{k+1/2, l+1/2, m} = {\textstyle \frac{1}{2}}
\left(\mathcal{M}_{k+1/2, l+1/2, m-1/2} + \mathcal{M}_{k+1/2, l+1/2, m+1/2}
\right)\]

at the face \((k+1/2, l+1/2, m)\) between the cells \((k+1/2, l+1/2,
m-1/2)\) and \((k+1/2, l+1/2, m+1/2)\).

Starting with \(\mathbf{v}=\nabla \times \mathbf{E}\), we have


(18)\[\begin{split}v_{1, k, l+1/2, m+1/2} &=
e_{l+1/2}^y\left(E_{3, k, l+1, m+1/2} - E_{3, k, l, m+1/2}\right) \\
&-e_{m+1/2}^z\left(E_{2, k, l+1/2, m+1} - E_{2, k, l+1/2, m}\right) , \\
v_{2, k+1/2, l, m+1/2} &=
e_{m+1/2}^z\left(E_{1, k+1/2, l, m+1} - E_{1, k+1/2, l, m}\right) \\
&-e_{k+1/2}^x\left(E_{3, k+1, l, m+1/2} - E_{3, k, l, m+1/2}\right) , \\
v_{3, k+1/2, l+1/2, m} &=
e_{k+1/2}^x\left(E_{2, k+1/2, l+1, m} - E_{1, k+1/2, l, m}\right) \\
&-e_{l+1/2}^y\left(E_{1, k+1/2, l+1, m} - E_{1, k+1/2, l, m}\right) .\end{split}\]

Here,


(19)\[e_{k+1/2}^x = 1/h_{k+1/2}^x, \quad
e_{l+1/2}^y = 1/h_{l+1/2}^y, \quad
e_{m+1/2}^z = 1/h_{m+1/2}^z .\]

Next, we let


(20)\[\begin{split}u_{1,k,l+1/2,m+1/2} &= \mathcal{M}_{k,l+1/2,m+1/2} v_{1,k,l+1/2,m+1/2} , \\
u_{2,k+1/2,l,m+1/2} &= \mathcal{M}_{k+1/2,l,m+1/2} v_{2,k+1/2,l+1/2,m} , \\
u_{3,k+1/2,l+1/2,m} &= \mathcal{M}_{k+1/2,l+1/2,m} v_{3,k+1/2,l+1/2,m} .\end{split}\]

Note that these components are related to the magnetic field components by


(21)\[\begin{split}u_{1,k,l+1/2,m+1/2} &=
\mathrm{i}\omega\mu_0 V_{k,l+1/2,m+1/2} H_{1,k+1/2,l,m+1/2} , \\
u_{2,k+1/2,l,m+1/2} &=
\mathrm{i}\omega\mu_0 V_{k+1/2,l,m+1/2} H_{2,k+1/2,l,m+1/2} , \\
u_{3,k+1/2,l+1/2,m} &=
\mathrm{i}\omega\mu_0 V_{k+1/2,l+1/2,m} H_{3,k+1/2,l+1/2,m} ,\end{split}\]

where


(22)\[\begin{split}V_{k,l+1/2,m+1/2} &= d_k^x h_{l+1/2}^y h_{m+1/2}^z , \\
V_{k+1/2,l,m+1/2} &= h_{k+1/2}^x d_l^y h_{m+1/2}^z , \\
V_{k+1/2,l+1/2,m} &= h_{k+1/2}^x h_{l+1/2}^y d_m^z .\end{split}\]

The discrete representation of the source term
\(\mathrm{i}\omega\mu_0\mathbf{J}_\mathrm{s}\), multiplied by the
appropriate dual volume, is


(23)\[\begin{split}s_{1,k+1/2,l,m} &= \mathrm{i}\omega\mu_0 V_{k+1/2,l,m} J_{1,k+1/2,l,m} , \\
s_{2,k,l+1/2,m} &= \mathrm{i}\omega\mu_0 V_{k,l+1/2,m} J_{2,k,l+1/2,m} , \\
s_{3,k,l,m+1/2} &= \mathrm{i}\omega\mu_0 V_{k,l,m+1/2} J_{3,k,l,m+1/2} .\end{split}\]

Let the residual for an arbitrary electric field that is not necessarily a
solution to the problem be defined as


(24)\[\mathbf{r} = V \left(\mathrm{i} \omega \mu_0 \mathbf{J}_\mathrm{s} +
-s\mu_0\sigma \mathbf{E} -
\nabla \times \mu^{-1}_\mathrm{r} \nabla \times \mathbf{E}\right) .\]

Its discretisation is


(25)\[\begin{split}r_{1,k+1/2,l,m} =
    ~&s_{1,k+1/2,l,m} + \mathcal{S}_{k+1/2,l,m} E_{1,k+1/2,l,m} \\
&-\left[e_{l+1/2}^y u_{3,k+1/2,l+1/2,m} -
    e_{l-1/2}^y u_{3,k+1/2,l-1/2,m]}\right.\\
&+\left[e_{m+1/2}^z u_{2,k+1/2,l,m+1/2} -
    e_{m-1/2}^z u_{2,k+1/2,l,m-1/2}\right] , \\
%
r_{2,k,l+1/2,m} =
    ~&s_{2,k,l+1/2,m} + \mathcal{S}_{k,l+1/2,m} E_{2,k,l+1/2,m} \\
&-\left[e_{m+1/2}^z u_{1,k,l+1/2, m+1/2} -
    e_{m-1/2}^z u_{1,k,l+1/2,m-1/2]} \right. \\
&+\left[e_{k+1/2}^x u_{3,k+1/2,l+1/2,m} -
    e_{k-1/2}^x u_{3,k-1/2,l+1/2,m]}\right] , \\
%
r_{3,k,l,m+1/2} =
    ~&s_{3,k,l,m+1/2} + \mathcal{S}_{k,l,m+1/2} E_{3,k,l,m+1/2} \\
&-\left[e_{k+1/2}^x u_{2,k+1/2,l,m+1/2} -
    e_{k-1/2}^x u_{2,k-1/2,m+1/2]}\right.\\
&+\left[e_{l+1/2}^y u_{1,k,l+1/2,m+1/2} -
    e_{l-1/2}^y u_{1,k,l-1/2,m+1/2}\right] .\end{split}\]

The weighting of the differences in \(u_1\), etc., may appear strange. The
reason is that the differences have been multiplied by the local dual volume.
As already mentioned, the dual volume for \(E_{1,k,l,m}\) is shown in
Figure 6(b).

For further details of the discretisation see [Muld06] or [Yee66]. The actual
meshing is done using discretize [http://discretize.simpeg.xyz] (part of the
SimPEG [https://simpeg.xyz]-framework). The coordinate system of
discretize uses a coordinate system were positive z is upwards.

The method is implemented in a matrix-free manner: the large sparse linear
matrix that describes the discretised problem is never explicitly formed, only
its action is evaluated on the latest estimate of the solution, thereby
reducing storage requirements.




Iterative Solvers

The multigrid method is an iterative (or relaxation) method and shares as such
the underlying idea of iterative solvers. We want to solve the linear equation
system


(26)\[A \mathbf{x} = \mathbf{b} ,\]

where \(A\) is the \(n\times n\) system matrix and \(x\) the
unknown. If \(v\) is an approximation to \(x\), then we can define two
important measures. One is the error \(e\)


(27)\[\mathbf{e} = \mathbf{x} - \mathbf{v} ,\]

which magnitude can be measured by any standard vector norm, for instance
the maximum norm and the Euclidean or 2-norm defined respectively, by


\[\|\mathbf{e}\|_\infty = \max_{1\leq j \leq n}|e_j|
\quad \text{and} \quad
\|\mathbf{e}\|_{2} = \sqrt{\sum_{j=1}^{n} e_{j}^{2}} .\]

However, as the solution is not known the error cannot be computed either.
The second important measure, however, is a computable measure, the residual
\(r\) (computed in emg3d.solver.residual())


(28)\[\mathbf{r} = \mathbf{b} - A\mathbf{v} .\]

Using Equation (27) we can rewrite Equation (26) as


\[A\mathbf{e} = \mathbf{b} - A\mathbf{v} ,\]

from which we obtain with Equation (28) the Residual Equation


(29)\[A\mathbf{e} = \mathbf{r} .\]

The Residual Correction is given by


(30)\[\mathbf{x} = \mathbf{v}+\mathbf{e} .\]




The Multigrid Method


Note

If you have never heard of multigrid methods before you might want to read
through the Multi-what?-section.



Multigrid is a numerical technique for solving large, often sparse, systems of
equations, using several grids at the same time. An elementary introduction can
be found in [BrHM00]. The motivation for this approach follows from the
observation that it is fairly easy to determine the local, short-range
behaviour of the solution, but more difficult to find its global, long-range
components. The local behaviour is characterized by oscillatory or rough
components of the solution. The slowly varying smooth components can be
accurately represented on a coarser grid with fewer points. On coarser grids,
some of the smooth components become oscillatory and again can be easily
determined.

The following constituents are required to carry out multigrid. First, a
sequence of grids is needed. If the finest grid on which the solution is to be
found has a constant grid spacing \(h\), then it is natural to define
coarser grids with spacings of \(2h\), \(4h\), etc. Let the problem on
the finest grid be defined by \(A^h \mathbf{x}^h = \mathbf{b}^h\). The
residual is \(\mathbf{r}^h = \mathbf{b}^h - A^h \mathbf{x}^h\) (see the
corresponding function emg3d.solver.residual(), and for more details
also the function emg3d.core.amat_x()). To find the oscillatory
components for this problem, a smoother or relaxation scheme is applied. Such a
scheme is usually based on an approximation of \(A^h\) that is easy to
invert. After one or more smoothing steps (see the corresponding function
emg3d.solver.smoothing()), say \(\nu_1\) in total, convergence will
slow down because it is generally difficult to find the smooth, long-range
components of the solution. At this point, the problem is mapped to a coarser
grid, using a restriction operator \(\tilde{I}^{2h}_h\) (see the
corresponding function emg3d.solver.restriction(), and for more details,
the functions emg3d.core.restrict_weights() and
emg3d.core.restrict(). On the coarse-grid, \(\mathbf{b}^{2h} =
\tilde{I}^{2h}_h\mathbf{r}^h\). The problem \(\mathbf{r}^{2h} =
\mathbf{b}^{2h} - A^{2h} \mathbf{x}^{2h} = 0\) is now solved for
\(\mathbf{x}^{2h}\), either by a direct method if the number of points is
sufficiently small or by recursively applying multigrid. The resulting
approximate solution needs to be interpolated back to the fine grid and added
to the solution. An interpolation operator \(I^h_{2h}\), usually called
prolongation in the context of multigrid, is used to update \(\mathbf{x}^h
:= \mathbf{x}^h + I^h_{2h}\mathbf{x}^{2h}\) (see the corresponding function
emg3d.solver.prolongation()). Here \(I^h_{2h}\mathbf{x}^{2h}\) is
called the coarse-grid correction. After prolongation, \(\nu_2\) additional
smoothing steps can be applied. This constitutes one multigrid iteration.

So far, we have not specified the coarse-grid operator \(A^{2h}\). It can
be formed by using the same discretisation scheme as that applied on the fine
grid. Another popular choice, \(A^{2h} = \tilde{I}^{2h}_h A^h I^h_{2h}\),
has not been considered here. Note that the tilde is used to distinguish
restriction of the residual from operations on the solution, because these act
on elements of different function spaces.

If multigrid is applied recursively, a strategy is required for moving through
the various grids. The simplest approach is the V-cycle shown in
Figure 7 for the case of four grids. Here, the same
number of pre- and post-smoothing steps is used on each grid, except perhaps on
the coarsest. In many cases, the V-cycle does not solve the coarse-grid
equations sufficiently well. The W-cycle, shown in Figure 8, will perform better in that case. In a W-cycle, the number of
coarse-grid corrections is doubled on subsequent coarser grids, starting with
one coarse-grid correction on the finest grid. Because of its cost, it is often
replaced by the F-cycle (Figure 9). In the F-cycle, the
number of coarse-grid corrections increases by one on each subsequent coarser
grid.


[image: V-Cycle]
Figure 7: V-cycle with \(\nu_1\) pre-smoothing steps and \(\nu_2\)
post-smoothing steps. On the coarsest grid, \(\nu_c\) smoothing steps
are applied or an exact solver is used. The finest grid has a grid spacing
\(h\) and the coarsest \(8h\). A single coarse-grid correction is
computed for all grids but the coarsest.




[image: W-Cycle]
Figure 8: W-cycle with \(\nu_1\) pre-smoothing steps and \(\nu_2\)
post-smoothing steps. On each grid except the coarsest, the number of
coarse-grid corrections is twice that of the underlying finer grid.




[image: F-Cycle]
Figure 9: F-cycle with \(\nu_1\) pre-smoothing steps and \(\nu_2\)
post-smoothing steps. On each grid except the coarsest, the number of
coarse-grid corrections increases by one compared to the underlying finer
grid.



One reason why multigrid methods may fail to reach convergence is strong
anisotropy in the coefficients of the governing partial differential equation
or severely stretched grids (which has the same effect as anisotropy). In that
case, more sophisticated smoothers or coarsening strategies may be required.
Two strategies are currently implemented, semicoarsening and line
relaxation, which can be used on their own or combined. Semicoarsening is when
the grid is only coarsened in some directions. Line relaxation is when in some
directions the whole gridlines of values are found simultaneously. If slow
convergence is caused by just a few components of the solution, a Krylov
subspace method can be used to remove them. In this way, multigrid is
accelerated by a Krylov method. Alternatively, multigrid might be viewed as a
preconditioner for a Krylov method.


Gauss-Seidel

The smoother implemented in emg3d is a Gauss-Seidel smoother. The
Gauss-Seidel method solves the linear equation system \(A \mathbf{x} =
\mathbf{b}\) iteratively using the following method:


(31)\[\mathbf{x}^{(k+1)} = L_*^{-1} \left(\mathbf{b} - U \mathbf{x}^{(k)} \right)
\ ,\]

where \(L_*\) is the lower triangular component, and \(U\) the strictly
upper triangular component, \(A = L_* + U\). On the coarsest grid it acts
as direct solver, whereas on the finer grid it acts as a smoother with only few
iterations.

See the function emg3d.solver.smoothing(), and for more details, the
functions emg3d.core.gauss_seidel(),
emg3d.core.gauss_seidel_x(), emg3d.core.gauss_seidel_y(),
emg3d.core.gauss_seidel_z(), and also
emg3d.core.blocks_to_amat().




Choleski factorisation

The actual solver of the system \(A\mathbf{x}=\mathbf{b}\) is a
non-standard Cholesky factorisation without pivoting for a symmetric, complex
matrix \(A\) tailored to the problem of the multigrid solver, using only
the main diagonal and five lower off-diagonals of the banded matrix \(A\).
The result is the same as simply using, e.g., numpy.linalg.solve() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve], but
faster for the particular use-case of this code.

See emg3d.core.solve() for more details.









          

      

      

    

  

    
      
          
            
  
CPU & RAM

The multigrid method is attractive because it shows optimal scaling for both
runtime and memory consumption. In the following are a few notes regarding
memory and runtime requirements. It also contains information about what has
been tried and what still could be tried in order to improve the current code.


Runtime

The gallery [https://emsig.github.io/emg3d-gallery] contains a script to
do some testing with regards to runtime, see the Tools Section [https://emsig.github.io/emg3d-gallery/gallery/index.html#tools]. An
example output of that script is shown in Figure 10.


[image: Runtime]Figure 10: Runtime as a function of cell size, which shows nicely the linear scaling
of multigrid solvers (using a single thread).



The costliest functions (for big models) are:



	>90 %: emg3d.solver.smoothing() (emg3d.core.gauss_seidel())


	<5 % each, in decreasing importance:



	emg3d.solver.prolongation()
(emg3d.solver.RegularGridProlongator)


	emg3d.solver.residual() (emg3d.core.amat_x())


	emg3d.solver.restriction()














Example with 262,144 / 2,097,152 cells (nu_{i,1,c,2}=0,2,1,2;
sslsolver=False; semicoarsening=True; linerelaxation=True):



	93.7 / 95.8 % smoothing


	3.6 / 2.0 % prolongation


	1.9 / 1.9 % residual


	0.6 / 0.4 % restriction







The rest can be ignored. For small models, the percentage of smoothing goes
down and of prolongation and restriction go up. But then the modeller
is fast anyway.

emg3d.core.gauss_seidel() and emg3d.core.amat_x() are written
in numba; jitting emg3d.solver.RegularGridProlongator turned out
to not improve things, and many functions used in the restriction are jitted
too. The costliest functions (RAM- and CPU-wise) are therefore already written
in numba.

Any serious attempt to improve the speed will have to tackle the smoothing
itself.

Things which could be tried


	Not much has been tested with the numba-options parallel; prange;
and nogil.


	There might be an additional gain by making emg3d.meshes.TensorMesh,
emg3d.models.Model, and emg3d.fields.Field instances jitted
classes.




Things which have been tried


	One important aspect of the smoothing part is the memory layout.
emg3d.core.gauss_seidel() and emg3d.core.gauss_seidel_x()
are ideal for F-arrays (loop z-y-x, hence slowest to fastest axis).
emg3d.core.gauss_seidel_y() and
emg3d.core.gauss_seidel_z(), however, would be optimal for C-arrays.
But copying the arrays to C-order and afterwards back is costlier in most
cases for both CPU and RAM. The one possible and therefore implemented
solution was to swap the loop-order in emg3d.core.gauss_seidel_y().


	Restriction and prolongation information could be saved in a dictionary
instead of recomputing it every time. Turns out to be not worth the
trouble.


	Rewrite emg3d.RegularGridInterpolator as jitted function, but the
iterator approach seems to be better for large grids.







Memory

Most of the memory requirement comes from storing the data itself, mainly the
fields (source field, electric field, and residual field) and the model
parameters (resistivity, eta, mu). For a big model, they some up; e.g., almost
3 GB for an isotropic model with 256x256x256 cells.

The gallery [https://emsig.github.io/emg3d-gallery] contains a script to
do some testing with regards to the RAM usage, see the Tools Section [https://emsig.github.io/emg3d-gallery/gallery/index.html#tools]. An
example output of that script is shown in Figure 11.


[image: RAM Usage]Figure 11: RAM usage, showing the optimal behaviour of multigrid methods. “Data RAM” is
the memory required by the fields (source field, electric field, residual
field) and by the model parameters (resistivity; and eta, mu). “MG Base” is
for solving one Gauss-Seidel iteration on the original grid. “MG full RAM”
is for solving one multigrid F-Cycle.



The theory of multigrid says that in an ideal scenario, multigrid requires
8/7 (a bit over 1.14) the memory requirement of carrying out one Gauss-Seidel
step on the finest grid. As can be seen in the figure, for models up to 2
million cells that holds pretty much, afterwards it becomes a bit worse.

However, for this estimation one has to run the model first. Another way to
estimate the requirement is by starting from the RAM used to store the fields
and parameters. As can be seen in the figure, for big models one is on the
save side estimating the required RAM as 1.35 times the storage required for
the fields and model parameters.

The figure also shows nicely the linear behaviour of multigrid; for twice the
number of cells twice the memory is required (from a certain size onwards).

Attempts at improving memory usage should focus on the difference between the
red line (actual usage) and the dashed black line (1.14 x base usage).







          

      

      

    

  

    
      
          
            
  
CLI interface

Command-line interface for certain specific tasks, such as forward modelling
and gradient computation of the misfit function. The command is emg3d,
consult the inbuilt help to get started:

emg3d --help





The CLI is driven by command-line parameters and a configuration file. The
default configuration file is emg3d.cfg, but another name can be provided
as first positional argument to emg3d. Note that arguments provided in the
command line overwrite the settings in the configuration file.


Format of the config file

The shown values are the defaults. All values are commented out in this
example; remove the comment signs to use them.

# Files
# -----
# If the files are provided without ending the suffix `.h5` will be appended.
# The log has the same name as `output`, but with the suffix `.log`.
[files]
# path = .                   # Path (absolute or relative) to the data
# survey = survey.h5         # Also via `--survey`
# model = model.h5           # Also via `--model`
# output = emg3d_out.h5      # Also via `--output`
# store_simulation = False   # Stores entire simulation in output if True

# Simulation parameters
# ---------------------
# Input parameters for the `Simulation` class, except for `solver_opts`
# (defined in their own section), but including the parameter `min_offset`
# for `compute()`.
[simulation]
# max_workers = 4    # Also via `-n` or `--nproc`.
# gridding = single  # One grid for all sources and frequencies.
# min_offset = 0.0   # Only relevant if `observed=True` (r<r_min set to NaN).

# Solver options
# --------------
# Input parameters for the solver.
# See https://emg3d.readthedocs.io/en/stable/api/emg3d.solver.solve.html
# for a list of all parameters. The only parameters that cannot be provided
# here are grid, model, sfield, efield, and return_info.
#
# Note that currently sslsolver, semicoarsening, and linerelaxation only
# accept True/False through the CLI.
[solver_opts]
# sslsolver = True
# semicoarsening = True
# linerelaxation = True
# verb = 0

# Gridding options
# ----------------
# Input parameters for the automatic gridding.
# See the description of `gridding_opts` and link therein in
# https://emg3d.readthedocs.io/en/stable/api/emg3d.simulations.Simulation.html
# for more details.
#
# List of lists: lists are comma-separated values, lists are separated by
# semi-colons.
#
# One of the limitation of the CLI is that `vector` has to be a string.
[gridding_opts]
# properties =          # list, e.g.: 0.3, 1, 1e5
# center =              # list, e.g.: 0, 0, 0
# cell_number =         # list, e.g.: 8, 16, 32, 64, 128
# min_width_pps =       # list, e.g.: 5, 3, 3
# expand =              # list, e.g.: 0.3, 1e8
# domain =              # list of lists, e.g.: -10000, 10000; None; None
# stretching =          # list of lists, e.g.: None; None; 1.05, 1.5
# min_width_limits =    # list of lists, e.g.: 10, 100; None; 50
# mapping =             # string, e.g.: Resistivity
# vector =              # string, e.g.: xy
# frequency =           # float, e.g.: 1.0
# seasurface =          # float, e.g.: 0.0
# max_buffer =          # float, e.g.: 100000.0
# lambda_factor =       # float, e.g.: 1.0
# verb =                # int, e.g.: 0
# lambda_from_center =  # bool, e.g.: False


# Data
# ----
# Select which sources, receivers, and frequencies of the survey are used. By
# default all data is used. These are comma-separated lists.
[data]
# sources = Tx02, Tx08, Tx14
# receivers = Rx01, Rx10
# frequencies = 0.5, 0.75











          

      

      

    

  

    
      
          
            
  
Gallery

The gallery with many examples can be found at emsig.github.io/emg3d-gallery [https://emsig.github.io/emg3d-gallery/gallery].
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Changelog


recent versions


v0.15.3: Move to EMSiG

2020-12-09

Various small things, mostly related to the automatic meshing.


	New parameter distance for get_origin_widths, as an alternative for
domain and vector: distance defines the survey domain as distance
from the center. This is then also available in construct_mesh and
Simulation, including the CLI.


	Removed precision from skin_depth, wavelength,
min_cell_width; all in meshes. It caused problems for high
frequencies.


	All data is stored in the Survey, not partly in Survey and partly
in Simulation.


	Deprecated collect_classes in io.


	Expanded the what-parameter in the Simulation-class to include
properties related to the gradient.


	Moved from github.com/empymod to github.com/emsig.







v0.15.2 : Bugfix deploy II

2020-12-04


	Fixing deploy script with GHA.







v0.15.1 : Bugfix deploy

2020-12-04

Small bugfix release, as v0.15.0 never got deployed.


	Fix CI deploy script.


	Makefile for the most common dev-tasks.







v0.15.0 : discretize restructure

2020-12-04

The package discretize went through a major restructuring with many name
changes and consequent deprecations (see below for a list of affected
mesh-properties for emg3d). This version updates emg3d to be compatible
with discretize>=0.6.0 in the long run. It also means that emg3d will, from
emg3d>=0.15.0 onwards, only work with discretize>=0.6.0.

Other notable changes:


	Bug fix re storing/loading synthetics


	Moved from Travis CI to GitHub Actions.




The relevant aliases and deprecations for emg3d are (consult the release
notes of discretize for all changes):

Aliases: Aliases (left) remain valid pointers to the new names (right).


	x0 => origin


	nC => n_cells


	vnC => shape_cells


	nN => n_nodes


	vnN => shape_nodes


	nE => n_edges


	nEx => n_edges_x


	nEy => n_edges_y


	nEz => n_edges_z


	vnE => n_edges_per_direction


	vnEx => shape_edges_x


	vnEy => shape_edges_y


	vnEz => shape_edges_z




Deprecations: Deprecated properties (left) raise a deprecation warning and
will be removed in the future. Currently, they still work and point to the new
names (right).


	hx => h[0]


	hy => h[1]


	hz => h[2]


	nCx => shape_cells[0]


	nCy => shape_cells[1]


	nCz => shape_cells[2]


	nNx => shape_nodes[0]


	nNy => shape_nodes[1]


	nNz => shape_nodes[2]


	vectorNx => nodes_x


	vectorNy => nodes_y


	vectorNz => nodes_z


	vectorCCx => cell_centers_x


	vectorCCy => cell_centers_y


	vectorCCz => cell_centers_z


	vol => cell_volumes







v0.14.3 : Bug fix

2020-11-19


	Bug fix for discretize>=0.6.0.







v0.14.2 : Bug fix

2020-11-18


	Bug fix for Windows affecting good_mg_cell_nr (int32 issue).







v0.14.1 : Bug fix

2020-11-14


	Fix for h5py>=3.0.


	Improved docs re automatic gridding.







v0.14.0 : Automatic gridding

2020-11-07

The simulation class comes new with an automatic gridding functionality, which
should make it much easier to compute CSEM data. With that the entire
optimization routine was improved too. See the API docs for more info of the
relevant implementation.


	simulation:


	Simulation: New gridding options 'single', 'frequency'
'source', and 'both'; new default is 'single'.


	compute() takes a new argument, min_offset. If observed=True,
it will add Gaussian random noise according to the standard deviation of
the data; it will set receivers responses below the minimum offset to NaN.


	There is no longer a reference model.


	misfit and gradient can now handle observations with NaN’s.






	survey: A Survey has new attributes standard_error,
noise_floor, and relative_error.


	optimize: Completely changed misfit and data-weighting to more sensible
functions.


	cli:


	As a consequence of the changes the data_weight_opts got removed.


	New sections [data] to select the wanted data and [gridding_opts]
for options of the automatic gridding.


	Section [simulation] has a new parameter min_offset (for creating
observed data).


	Output has a new parameter n_observations if misfit or gradient
were called, which is the number of observations that were used to compute
the misfit.






	meshes:


	New functions construct_mesh, get_origin_widths,
good_mg_cell_nr and other, smaller helper routines.


	Deprecated the old meshing routines get_hx_h0, get_cell_numbers,
get_stretched_h, get_domain, get_hx; they will be removed in
the future.


	Default of good_mg_cell_nr changed, and the documentation (and
verbosity) with regards to «good» number of cells was improved.






	Bug fixes:


	maps: Fixed the mapping of the gradients (Conductivity is the only
mapping that was not affected by this bug).






	Removed deprecated features:


	models.Model: Removed parameters res_{x;y;z}.


	io.save: Removed deprecated parameter backend.


	io.save: Removed default, file extension has to be provided.











v0.13.0 : CLI

2020-09-22


	New Module cli for command-line interaction:

The command-line interface can currently be used to forward model an entire
Simulation, and also to compute the misfit of it with respect to some
data and the gradient of the misfit function. See the section “CLI interface”
in the documentation for more info.





Note that, while cli (v0.13.0) and optimize (v0.12.0) are
implemented, they are still in development and are likely going to change
throughout the next two minor releases or so.


	Other changes:


	solver: Changes in verbosity for emg3d.solve:


	New default verbosity is 1 (only warnings; before it was 2).


	Verbosities {-1;0;1} remain unchanged.


	Verbosities {2;3;4} => {3;4;5}.


	New verbosity 2: Only shows a one-liner at the end (plus warnings).






	survey and simulation: to_file and from_file have new a
parameter name, to store and load with a particular name instead of the
default survey/simulation (useful when storing, e.g., many surveys
in one file).


	survey: stores new also the reference-data; different data (observed,
reference) is contained in a data-dict when storing.


	simulation: takes new a verb parameter.


	optimize:


	Gradient now possible for arbitrarily rotated sources and receivers.


	Falls back to synthetic instead of observed now if reference
not found.






	io: np.bool_ are converted back to bool when loading.


	Re-arrange, improve, and update documentation.











v0.12.0 : Survey & Simulation

2020-07-25

This is a big release with many new features, and unfortunately not completely
backwards compatible. The main new features are the new Survey and
Simulation classes, as well as some initial work for optimization
(misfit, gradient). Also, a Model can now be a resistivity model, a
conductivity model, or the logarithm (natural or base 10) therefore. Receivers
can now be arbitrarily rotated, just as the sources. In addition to the
existing soft-dependencies empymod, discretize, and h5py there
are the new soft-dependencies xarray and tqm; discretize is now
much tighter integrated. For the new survey and simulation classes xarray
is a required dependency. However, the only hard dependency remain scipy
and numba, if you use emg3d purely as a solver. Data reading and
writing has new a JSON-backend, in addition to the existing HDF5 and
NumPy-backends.

In more detail:


	Modules:


	surveys (new; requires xarray):


	Class surveys.Survey, which combines sources, receivers, and data.


	Class surveys.Dipole, which defines electric or magnetic point
dipoles and finite length dipoles.






	simulations (new; requires xarray; soft-dependency tqdm):


	Class simulations.Simulation, which combines a survey with a model. A
simulation computes the e-field (and h-field) asynchronously using
concurrent.futures. This class will include automatic, source- and
frequency-dependent gridding in the future. If tqdm is installed it
displays a progress bar for the asynchronous computation. Note that the
simulation class has still some limitations, consult the class
documentation.






	models:


	Model instances take new the parameters property_{x;y;z} instead of
res_{x;y;z}. The properties can be either resistivity, conductivity,
or log_{e;10} thereof. What is actually provided has to be defined with
the parameter mapping. By default, it remains resistivity, as it was
until now. The keywords res_{x;y;z} are deprecated, but still
accepted at the moment. The attributes model.res_{x;y;z} are still
available too, but equally deprecated. However, it is no longer
possible to assign values to these attributes, which is a backwards
incompatible change.


	A model knows now how to interpolate itself from its grid to another grid
(interpolate2grid).






	maps:


	New mappings for models.Model instances: The mappings take care
of how to transform the investigation variable to conductivity and back,
and how it affects its derivative.


	New interpolation routine edges2cellaverages.






	fields:


	Function get_receiver_response (new), which returns the response
for arbitrarily rotated receivers.


	Improvements to Field and SourceField:


	_sval and _smu0 not stored any longer, derived from _freq.


	SourceField is now using the copy() and from_dict() from
its parents class Field.










	io:


	File-format json (new), writes to a hierarchical, plain json
file.


	Deprecated the use of backend, it uses the file extension of
fname instead.


	This means .npz (instead of numpy), .h5 (instead of
h5py), and new .json.


	New parameter collect_classes, which can be used to switch-on
collection of the main classes in root-level dictionaries. By default,
they are no longer collected (changed).






	meshes:


	meshes.TensorMesh new inherits from discretize if installed.


	Added __eq__ to models.TensorMesh to compare meshes.






	optimize (new)


	Functionalities related to inversion (data misfit, gradient, data
weighting, and depth weighting). This module is in an early stage, and
the API will likely change in the future. Current functions are
misfit, gradient (using the adjoint-state method), and
data_weighting. These functionalities are best accessed through the
Simulation class.










	Dependencies:


	empymod is now a soft dependency (no longer a hard dependency), only
required for utils.Fourier (time-domain modelling).


	Existing soft dependency discretize is now baked straight into
meshes.


	New soft dependency xarray for the Survey class (and therefore also
for the Simulation class and the optimize module).


	New soft dependency tqdm for nice progress bars in asynchronous
computation.






	Deprecations and removals:


	Removed deprecated functions data_write and data_read.


	Removed all deprecated functions from utils.






	Miscellaneous:


	Re-organise API-docs.


	Much bookkeeping (improve error raising and checking; chaining errors,
numpy types, etc).











v0.11.0 : Refactor

2020-05-05

Grand refactor with new internal layout. Mainly splitting-up utils into
smaller bits. Most functionalities (old names) are currently retained in
utils and it should be mostly backwards compatible for now, but they are
deprecated and will eventually be removed. Some previously deprecated functions
were removed, however.


	Removed deprecated functions:


	emg3d.solver.solver (use emg3d.solver.solve instead).


	Aliases of emg3d.io.data_write and emg3d.io.data_read in
emg3d.utils.






	Changes:


	SourceField has now the same signature as Field (this might break
your code if you called SourceField directly, with positional
arguments, and not through get_source_field).


	More functions and classes in the top namespace.


	Replaced core.l2norm with scipy.linalg.norm, as SciPy 1.4 got the
following PR: https://github.com/scipy/scipy/pull/10397 (reason to raise
minimum SciPy to 1.4).


	Increased minimum required versions of dependencies to


	scipy>=1.4.0 (raised from 1.1, see note above)


	empymod>=2.0.0 (no min requirement before)


	numba>=0.45.0 (raised from 0.40)










	New layout


	njitted -> core.


	utils split in fields, meshes, models, maps, and
utils.






	Bugfixes:


	Fixed to_dict, from_dict, and copy for the SourceField.


	Fixed io for SourceField, that was not implemented properly.













v0.8.0 - v0.10.x


v0.10.1 : Zero Source

2020-04-29


	Bug fixes:


	Checks now if provided source-field is zero, and exists gracefully if so,
returning a zero electric field. Until now it failed with a
division-by-zero error.






	Improvements:


	Warnings: If verb=1 it prints a warning in case it did not converge (it
finished silently until now).


	Improvements to docs (figures-scaling; intersphinx).


	Adjust Fields.pha and Fields.amp in accordance with empymod v2:
.pha and .amp are now methods; uses directly
empymod.utils.EMArray.


	Adjust tests for empymod v2 (Fields, Fourier).











v0.10.0 : Data persistence

2020-03-25


	New:


	New functions emg3d.save and emg3d.load to save and load all sort
of emg3d instances. The currently implemented backends are
h5py for .h5-files (default, but requires h5py to be installed)
and numpy for .npz-files.


	Classes emg3d.utils.Field, emg3d.utils.Model, and
emg3d.utils.TensorMesh have new methods .copy(), .to_dict(),
and .from_dict().


	emg3d.utils.Model: Possible to create new models by adding or
subtracting existing models, and comparing two models (+, -, ==
and !=). New attributes shape and size.


	emg3d.utils.Model does not store the volume any longer (just vnC).






	Deprecations:


	Deprecated data_write and data_read.






	Internal and bug fixes:


	All I/O-related stuff moved to its own file io.py.


	Change from NUMBA_DISABLE_JIT to use py_func for testing and
coverage.


	Bugfix: emg3d.njitted.restrict did not store the {x;y;z}-field if
sc_dir was {4;5;6}, respectively.











v0.9.3 : Sphinx gallery

2020-02-11


	Rename solver.solver to solver.solve; load solve also into the
main namespace as emg3d.solve.


	Adjustment to termination criterion for STAGNATION: The current error is
now compared to the last error of the same cycle type. Together with this the
workaround for sslsolver when called with an initial efield introduced in
v0.8.0 was removed.


	Adjustment to utils.get_hx_h0 (this might change your boundaries): The
computation domain is now computed so that the distance for the signal
travelling from the source to the boundary and back to the most remote
receiver is at least two wavelengths away. If this is within the provided
domain, then now extra buffer is added around the domain. Additionally, the
function has a new parameter max_domain, which is the maximum distance
from the center to the boundary; defaults to 100 km.


	New parameter log for utils.grid2grid; if True, then the
interpolation is carried out on a log10-scale.


	Change from the notebook-based emg3d-examples-repo to the
sphinx-based emg3d-gallery-repo.







v0.9.2 : Complex sources

2019-12-26


	Strength input for get_source_field can now be complex; it also stores
now the source location and its strength and moment.


	get_receiver can now take entire Field instances, and returns in that
case (fx, fy, fz) at receiver locations.


	Krylov subspace solvers:


	Solver now finishes in the middle of preconditioning cycles if tolerance is
reached.


	Solver now aborts if solution diverges or stagnates also for the SSL
solvers; it fails and returns a zero field.


	Removed gmres and lgmres from the supported SSL solvers; they do
not work nice for this problem. Supported remain bicgstab (default),
cgs, and gcrotmk.






	Various small things:


	New attribute Field.is_electric, so the field knows if it is electric
or magnetic.


	New verb-possibility: verb=-1 is a continuously updated one-liner,
ideal to monitor large sets of computations or in inversions.


	The returned info dictionary contains new keys:


	runtime_at_cycle: accumulated total runtime at each cycle;


	error_at_cycle: absolute error at each cycle.






	Simple __repr__ for TensorMesh, Model, Fourier, Time.






	Bugfixes:


	Related to get_hx_h0, data_write, printing in Fourier.











v0.9.1 : VolumeModel

2019-11-13


	New class VolumeModel; changes in Model:


	Model now only contains resistivity, magnetic permeability, and
electric permittivity.


	VolumeModel contains the volume-averaged values eta and zeta; called
from within emg3d.solver.solver.


	Full wave equation is enabled again, via epsilon_r; by default it is
set to None, hence diffusive approximation.


	Model parameters are now internally stored as 1D arrays.


	An {isotropic, VTI, HTI} initiated model can be changed by providing the
missing resistivities.






	Bugfix: Up and till version 0.8.1 there was a bug. If resistivity was set
with slices, e.g., model.res[:, :, :5]=1e10, it DID NOT update the
corresponding eta. This bug was unintentionally fixed in 0.9.0, but only
realised now.


	Various:


	The log now lists the version of emg3d.


	PEP8: internal imports now use absolute paths instead of relative ones.


	Move from conda-channel prisae to conda-forge.


	Automatic deploy for PyPi and conda-forge.











v0.9.0 : Fourier

2019-11-07


	New routine:


	emg3d.utils.Fourier, a class to handle Fourier-transform related stuff
for time-domain modelling. See the example notebooks for its usage.






	Utilities:


	Fields and returned receiver-arrays (EMArray) both have amplitude
(.amp) and phase (.pha) attributes.


	Fields have attributes containing frequency-information (freq,
smu0).


	New class SourceField; a subclass of Field, adding vector and
v{x,y,z} attributes for the real valued source vectors.


	The Model is not frequency-dependent any longer and does NOT take
a freq-parameter any more (currently it still takes it, but it is
deprecated and will be removed in the future).


	data_write automatically removes _vol from TensorMesh instances
and _eta_{x,y,z}, _zeta from Model instances. This makes the
archives smaller, and they are not required, as they are simply
reconstructed if needed.






	Internal changes:


	The multigrid method, as implemented, only works for the diffusive
approximation. Nevertheless, we always used \sigma-i\omega\epsilon,
hence a complex number. This is now changed and \epsilon set to 0,
leaving only \sigma.


	Change time convention from exp(-iwt) to exp(iwt), as used in
empymod and commonly in CSEM. Removed the parameter conjugate from
the solver, to simplify.


	Change own private class variables from __ to _.


	res and mu_r are now checked to ensure they are >0; freq is
checked to ensure !=0.






	New dependencies and maintenance:


	empymod is a new dependency.


	Travis now checks all the url’s in the documentation, so there should be no
broken links down the road. (Check is allowed to fail, it is visual QC.)






	Bugfixes:


	Fixes to the setuptools_scm-implementation (MANIFEST.in).











v0.8.1 : setuptools_scm

2019-10-22


	Implement setuptools_scm for versioning (adds git hashes for
dev-versions).







v0.8.0 : Laplace

2019-10-04


	Laplace-domain computation: By providing a negative freq-value to
utils.get_source_field and utils.Model, the computation is carried
out in the real Laplace domain s = freq instead of the complex frequency
domain s = 2i*pi*freq.


	New meshing helper routines (particularly useful for transient modelling
where frequency-dependent/adaptive meshes are inevitable):


	utils.get_hx_h0 to get cell widths and origin for given parameters
including a few fixed interfaces (center plus two, e.g. top anomaly,
sea-floor, and sea-surface).


	utils.get_cell_numbers to get good values of number of cells for given
primes.






	Speed-up njitted.volume_average significantly thanks to @jcapriot.


	Bugfixes and other minor things:


	Abort if l2-norm is NaN (only works for MG).


	Workaround for the case where a sslsolver is used together with a
provided initial efield.


	Changed parameter rho to res for consistency reasons in
utils.get_domain.


	Changed parameter h_min to min_width for consistency reasons in
utils.get_stretched_h.













v0.1.0 - v0.7.x


v0.7.1 : JOSS article

2019-07-17


	Version of the JOSS article, https://doi.org/10.21105/joss.01463 .


	New function utils.grid2grid to move from one grid to another. Both
functions (utils.get_receiver and utils.grid2grid) can be used for
fields and model parameters (with or without extrapolation). They are very
similar, the former taking coordinates (x, y, z) as new points, the latter
one another TensorMesh instance.


	New jitted function njitted.volume_average for interpolation using the
volume-average technique.


	New parameter conjugate in solver.solver to permit both Fourier
transform conventions.


	Added exit_status and exit_message to info_dict.


	Add section Related ecosystem to documentation.







v0.7.0 : H-field

2019-07-05


	New routines:


	utils.get_h_field: Small routine to compute the magnetic field from
the electric field using Faraday’s law.


	utils.get_receiver: Small wrapper to interpolate a field at receiver
positions. Added 3D spline interpolation; is the new default.






	Re-implemented the possibility to define isotropic magnetic permeabilities in
utils.Model. Magnetic permeability is not tri-axially included in the
solver currently; however, it would not be too difficult to include if there
is a need.


	CPU-graph added on top of RAM-graph.


	Expand utils.Field to work with pickle/shelve.


	Jit np.linalg.norm (njitted.l2norm).


	Use scooby (soft dependency) for versioning, rename Version to
Report (backwards incompatible).


	Bug fixes:


	Small bugfix introduced in ebd2c9d5: sc_cycle and lr_cycle was not
updated any longer at the end of a cycle (only affected sslsolver=True.


	Small bugfix in utils.get_hx.











v0.6.2 : CPU & RAM

2019-06-03

Further speed and memory improvements:


	Add CPU & RAM-page to documentation.


	Change loop-order from x-z-y to z-x-y in Gauss-Seidel smoothing with line
relaxation in y-direction. Hence reversed lexicographical order. This results
in a significant speed-up, as x is the fastest changing axis.


	Move total residual computation from solver.residual into
njitted.amat_x.


	Simplifications in utils:


	Simplify utils.get_source_field.


	Simplify utils.Model.


	Removed unused timing-stuff from early development.











v0.6.1 : Memory

2019-05-28

Memory and speed improvements:


	Only compute residual and l2-norm when absolutely necessary.


	Inplace computations for np.conjugate in solver.solver and
np.subtract in solver.residual.







v0.6.0 : RegularGridInterpolator

2019-05-26


	Replace scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator] with a custom
tailored version of it (class:emg3d.solver.RegularGridProlongator); results
in twice as fast prolongation.


	Simplify the fine-grid computation in prolongation without using
gridE*; memory friendlier.


	Submission to JOSS.


	Add Multi-what?-page to documentation.


	Some major refactoring, particularly in solver.


	Removed discretize as hard dependency.


	Rename rdir and ldir (and related p*dir; *cycle) to the more
descriptive sc_dir and lr_dir.







v0.5.0 : Accept any grid size

2019-05-01


	First open-source version.


	Include RTD, Travis, Coveralls, Codacy, and Zenodo. No benchmarks yet.


	Accepts now any grid size (warns if a bad grid size for MG is provided).


	Coarsens now to the lowest level of each dimension, not only to the coarsest
level of the smallest dimension.


	Combined restrict_rx, restrict_ry, and restrict_rz to
restrict.


	Improve speed by passing pre-allocated arrays to jitted functions.


	Store res_y, res_z and corresponding eta_y, eta_z only if
res_y, res_z were provided in initial call to utils.model.


	Change zeta to v_mu_r.


	Include rudimentary TensorMesh-class in utils; removes hard
dependency on discretize.


	Bugfix: Take a provided efield into account; don’t return if provided.







v0.4.0 : Cholesky

2019-03-29


	Use solve_chol for everything, remove solve_zlin.


	Moved mesh.py and some functionalities from solver.py into
utils.py.


	New mesh-tools. Should move to discretize eventually.


	Improved source generation tool. Might also move to discretize.


	printversion is now included in utils.


	Many bug fixes.


	Lots of improvements to tests.


	Lots of improvements to documentation. Amongst other, moved docs from
__init__.py into the docs rst.







v0.3.0 : Semicoarsening

2019-01-18


	Semicoarsening option.


	Number of cells must still be 2^n, but n can be different in the x-, y-, and
z-directions.


	Many other iterative solvers from scipy.sparse.linalg [https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#module-scipy.sparse.linalg] can be used. It
seems to work fine with the following methods:


	scipy.sparse.linalg.bicgstab() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html#scipy.sparse.linalg.bicgstab]:  BIConjugate Gradient STABilize;


	scipy.sparse.linalg.cgs() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs]: Conjugate Gradient Squared;


	scipy.sparse.linalg.gmres() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html#scipy.sparse.linalg.gmres]: Generalized Minimal RESidual;


	scipy.sparse.linalg.lgmres() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lgmres.html#scipy.sparse.linalg.lgmres]: Improvement of GMRES using alternating
residual vectors;


	scipy.sparse.linalg.gcrotmk() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gcrotmk.html#scipy.sparse.linalg.gcrotmk]: GCROT: Generalized Conjugate Residual
with inner Orthogonalization and Outer Truncation.






	The SciPy-solver or MG can be used all in combination or on its own, hence
only MG, SciPy-solver with MG preconditioning, only SciPy-solver.







v0.2.0 : Line relaxation

2019-01-14


	Line relaxation option.







v0.1.0 : Initial

2018-12-28


	Standard multigrid with or without BiCGSTAB.


	Tri-axial anisotropy.


	Number of cells must be 2^n, and n has to be the same in the x-, y-, and
z-directions.












          

      

      

    

  

    
      
          
            
  
Maintainers Guide


Making a release


	Update CHANGELOG.rst.


	Push it to GitHub, create a release tagging it.


	Tagging it on GitHub will automatically deploy it to PyPi, which in turn
will create a PR for the conda-forge feedstock [https://github.com/conda-forge/emg3d-feedstock]. Merge that PR.


	Check that:






	PyPi [https://pypi.org/project/emg3d] deployed;


	conda-forge [https://anaconda.org/conda-forge/emg3d] deployed;


	Zenodo [https://doi.org/10.5281/zenodo.3229006] minted a DOI;


	emg3d.rtfd.io [https://emg3d.rtfd.io] created a tagged version.










Useful things


	If there were changes to README, check it with:

python setup.py --long-description | rst2html.py --no-raw > index.html







	If unsure, test it first on testpypi (requires ~/.pypirc):

~/anaconda3/bin/twine upload dist/* -r testpypi







	If unsure, test the test-pypi for conda if the skeleton builds:

conda skeleton pypi --pypi-url https://test.pypi.io/pypi/ emg3d







	If it fails, you might have to install python3-setuptools:

sudo apt install python3-setuptools












CI


Automatic bits


	Testing on Github Actions includes:


	Tests using pytest


	Linting / code style with pytest-flake8


	Ensure all http(s)-links work (sphinx linkcheck)






	Line-coverage with pytest-cov on Coveralls [https://coveralls.io/github/emsig/emg3d]


	Code-quality on Codacy [https://app.codacy.com/manual/prisae/emg3d/dashboard]


	Manual on ReadTheDocs [https://emg3d.readthedocs.io/en/latest]


	DOI minting on Zenodo [https://doi.org/10.5281/zenodo.3229006]







Manual things


	Benchmarks with Airspeed Velocity [https://emsig.github.io/emg3d-asv]
(asv)


	Gallery in emg3d-gallery [https://emsig.github.io/emg3d-gallery]
(sphinx-gallery)







Automatically deploys if tagged


	PyPi [https://pypi.org/project/emg3d]


	conda -c conda-forge [https://anaconda.org/conda-forge/emg3d]












          

      

      

    

  

    
      
          
            
  
Solver

Electromagnetic modeller in the diffusive limit (low frequencies) for 3D media
with tri-axial electrical anisotropy. The matrix-free multigrid solver can be
used as main solver or as preconditioner for one of the Krylov subspace methods
implemented in scipy.sparse.linalg [https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#module-scipy.sparse.linalg], and the governing equations are
discretized on a staggered Yee grid. The code is written completely in Python
using the numpy/scipy-stack, where the most time-consuming parts are
sped-up through jitted numba-functions.


emg3d.solver Module

The actual multigrid solver routines. The most computationally intensive parts,
however, are in the emg3d.core as numba-jitted functions.


Functions







	solve(grid, model, sfield[, efield, cycle, …])

	Solver for 3D CSEM data with tri-axial electrical anisotropy.



	multigrid(grid, model, sfield, efield, var, …)

	Multigrid solver for 3D controlled-source electromagnetic (CSEM) data.



	smoothing(grid, model, sfield, efield, nu, …)

	Reducing high-frequency error by smoothing.



	restriction(grid, model, sfield, residual, …)

	Downsampling of grid, model, and fields to a coarser grid.



	prolongation(grid, efield, cgrid, cefield, …)

	Interpolating the electric field from coarse grid to fine grid.



	residual(grid, model, sfield, efield[, norm])

	Computing the residual.



	krylov(grid, model, sfield, efield, var)

	Krylov Subspace iterative solver for 3D CSEM data.









Classes







	MGParameters(verb, cycle, sslsolver, …)

	Collect multigrid solver settings.



	RegularGridProlongator(x, y, cxy)

	Prolongate field from coarse to fine grid.











emg3d.core Module

The core functionalities, the most computationally demanding parts, of the
emg3d.solver as just-in-time (jit) compiled functions using numba.


Functions







	amat_x(rx, ry, rz, ex, ey, ez, eta_x, eta_y, …)

	Residual without or with source term.



	blocks_to_amat(amat, bvec, middle, left, …)

	Insert middle, left, and rhs into main arrays amat and bvec.



	gauss_seidel(ex, ey, ez, sx, sy, sz, eta_x, …)

	Gauss-Seidel method.



	gauss_seidel_x(ex, ey, ez, sx, sy, sz, …)

	Gauss-Seidel method with line relaxation in x-direction.



	gauss_seidel_y(ex, ey, ez, sx, sy, sz, …)

	Gauss-Seidel method with line relaxation in y-direction.



	gauss_seidel_z(ex, ey, ez, sx, sy, sz, …)

	Gauss-Seidel method with line relaxation in z-direction.



	restrict(crx, cry, crz, rx, ry, rz, wx, wy, …)

	Restriction of residual from fine to coarse grid.



	restrict_weights(vectorN, vectorCC, h, …)

	Restriction weights for the coarse-grid correction operator.



	solve(amat, bvec)

	Solve A x = b using a non-standard Cholesky factorisation.














          

      

      

    

  

    
      
          
            
  
solve


	
emg3d.solver.solve(grid, model, sfield, efield=None, cycle='F', sslsolver=False, semicoarsening=False, linerelaxation=False, verb=1, **kwargs)

	Solver for 3D CSEM data with tri-axial electrical anisotropy.

The principal solver of emg3d is using the multigrid method as presented
in [Muld06]. Multigrid can be used as a standalone solver, or as a
preconditioner for an iterative solver from the
scipy.sparse.linalg [https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#module-scipy.sparse.linalg]-library, e.g.,
scipy.sparse.linalg.bicgstab() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html#scipy.sparse.linalg.bicgstab]. Alternatively, these Krylov subspace
solvers can also be used without multigrid at all. See the cycle and
sslsolver parameters.

Implemented are the F-, V-, and W-cycle schemes for multigrid
(cycle parameter), and the amount of smoothing steps (initial smoothing,
pre-smoothing, coarsest-grid smoothing, and post-smoothing) can be set
individually (nu_init, nu_pre, nu_coarse, and nu_post,
respectively). The maximum level of coarsening can be restricted with the
clevel parameter.

Semicoarsening and line relaxation, as presented in [Muld07], are
implemented, see the semicoarsening and linerelaxation parameters.
Using the BiCGSTAB solver together with multigrid preconditioning with
semicoarsening and line relaxation is slow but generally the most robust.
Not using BiCGSTAB nor semicoarsening nor line relaxation is fast but may
fail on stretched grids.


	Parameters

	
	gridemg3d.meshes.TensorMesh

	The grid. See emg3d.meshes.TensorMesh.



	modelemg3d.models.Model

	The model. See emg3d.models.Model.



	sfieldemg3d.fields.SourceField

	The source field. See emg3d.fields.get_source_field().



	efieldemg3d.fields.Field, optional

	Initial electric field. It is initiated with zeroes if not provided. A
provided efield MUST have frequency information (initiated with
emg3d.fields.Field(..., freq)).

If an initial efield is provided nothing is returned, but the final
efield is directly put into the provided efield.

If an initial field is provided and a sslsolver is used, then it first
carries out one multigrid cycle without semicoarsening nor line
relaxation. The sslsolver is at times unstable with an initial guess,
carrying out one MG cycle helps to stabilize it.



	cyclestr; optional.

	Type of multigrid cycle. Default is ‘F’.


	‘V’: V-cycle, simplest version;


	‘W’: W-cycle, most expensive version;


	‘F’: F-cycle, sort of a compromise between ‘V’ and ‘W’;


	None: Does not use multigrid, only sslsolver.




If None, sslsolver must be provided, and the sslsolver will be used
without multigrid pre-conditioning.

Comparison of V (left), F (middle), and W (right) cycles for the case
of four grids (three relaxation and prolongation steps):

 h_
2h_   \    /   \          /   \            /
4h_    \  /     \    /\  /     \    /\    /
8h_     \/       \/\/  \/       \/\/  \/\/







	sslsolverstr, optional

	A scipy.sparse.linalg [https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#module-scipy.sparse.linalg]-solver, to use with MG as pre-conditioner
or on its own (if cycle=None). Default is False.

Current possibilities:



	True or ‘bicgstab’: BIConjugate Gradient STABilized
scipy.sparse.linalg.bicgstab() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html#scipy.sparse.linalg.bicgstab];


	‘cgs’: Conjugate Gradient Squared
scipy.sparse.linalg.cgs() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs];


	‘gcrotmk’: GCROT: Generalized Conjugate Residual with inner
Orthogonalization and Outer Truncation
scipy.sparse.linalg.gcrotmk() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gcrotmk.html#scipy.sparse.linalg.gcrotmk].







It does currently not work with ‘cg’, ‘bicg’, ‘qmr’, and ‘minres’ for
various reasons (e.g., some require rmatvec in addition to matvec).



	semicoarseningint; optional

	Semicoarsening. Default is False.


	True: Cycling over 1, 2, 3.


	0 or False: No semicoarsening.


	1: Semicoarsening in x direction.


	2: Semicoarsening in y direction.


	3: Semicoarsening in z direction.


	Multi-digit number containing digits from 0 to 3. Multigrid will
cycle over these values, e.g., semicoarsening=1213 will cycle
over [1, 2, 1, 3].






	linerelaxationint; optional

	Line relaxation. Default is False.

This parameter is not respected on the coarsest grid, except if it is
set to 0. If it is bigger than zero line relaxation on the coarsest
grid is carried out along all dimensions which have more than 2 cells.


	True: Cycling over [4, 5, 6].


	0 or False: No line relaxation.


	1: line relaxation in x direction.


	2: line relaxation in y direction.


	3: line relaxation in z direction.


	4: line relaxation in y and z directions.


	5: line relaxation in x and z directions.


	6: line relaxation in x and y directions.


	7: line relaxation in x, y, and z directions.


	Multi-digit number containing digits from 0 to 7. Multigrid will
cycle over these values, e.g., linerelaxation=1213 will cycle
over [1, 2, 1, 3].




Note: Smoothing is generally done in lexicographical order, except for
line relaxation in y direction; the reason is speed (memory access).



	verbint; optional

	Level of verbosity (the higher the more verbose). Default is 1.


	0: Nothing.


	1: Warnings.


	2: One-liner at the end.


	3: Runtime and information about the method.


	4: Additional information for each MG-cycle.


	5: Everything (slower due to additional error computations).


	-1: One-liner (dynamically updated).






	**kwargsOptional solver options:

	
	tol : float

Convergence tolerance. Default is 1e-6.

Iterations stop as soon as the norm of the residual has decreased by
this factor, relative to the residual norm obtained for a zero
electric field.



	maxit : int

Maximum number of multigrid iterations. Default is 50.

If sslsolver is used, this applies to the sslsolver.

In the case that multigrid is used as a pre-conditioner for the
sslsolver, the maximum iteration for multigrid is defined by the
maximum length of the linerelaxation and semicoarsening-cycles.



	nu_init : int

Number of initial smoothing steps, before MG cycle. Default is 0.



	nu_pre : int

Number of pre-smoothing steps. Default is 2.



	nu_coarse : int

Number of smoothing steps on coarsest grid. Default is 1.



	nu_post : int

Number of post-smoothing steps. Default is 2.



	clevel : int

The maximum coarsening level can be different for each dimension and
is, by default, automatically determined (clevel=-1). The
parameter clevel can be used to restrict the maximum coarsening
level in any direction by its value.
Default is -1.



	return_info : bool

If True, a dictionary is returned with runtime info (final norm and
number of iterations of MG and the sslsolver).











	Returns

	
	efieldemg3d.fields.Field

	Resulting electric field. Is not returned but replaced in-place if an
initial efield was provided.



	info_dictdict

	Dictionary with runtime info; only if return_info=True.

Keys:


	exit: Exit status, 0=Success, 1=Failure;


	exit_message: Exit message, check this if exit=1;


	abs_error: Absolute error;


	rel_error: Relative error;


	ref_error: Reference error [norm(sfield)];


	tol: Tolerance (abs_error<ref_error*tol);


	it_mg: Number of multigrid iterations;


	it_ssl: Number of SSL iterations;


	time: Runtime (s).


	runtime_at_cycle: Runtime after each cycle (s).


	error_at_cycle: Absolute error after each cycle.












Examples

>>> import emg3d
>>> import numpy as np
>>> # Create a simple grid, 8 cells of length 1 in each direction,
>>> # starting at the origin.
>>> grid = emg3d.TensorMesh(
>>>         [np.ones(8), np.ones(8), np.ones(8)],
>>>         origin=np.array([0, 0, 0]))
>>> # The model is a fullspace with tri-axial anisotropy.
>>> model = emg3d.Model(grid, property_x=1.5, property_y=1.8,
>>>                     property_z=3.3, mapping='Resistivity')
>>> # The source is a x-directed, horizontal dipole at (4, 4, 4)
>>> # with a frequency of 10 Hz.
>>> sfield = emg3d.fields.get_source_field(
>>>         grid, src=[4, 4, 4, 0, 0], freq=10)
>>> # Compute the electric signal.
>>> efield = emg3d.solve(grid, model, sfield, verb=4)
>>> # Get the corresponding magnetic signal.
>>> hfield = emg3d.fields.get_h_field(grid, model, efield)
.
:: emg3d START :: 10:27:25 :: v0.9.1
.
   MG-cycle       : 'F'                 sslsolver : False
   semicoarsening : False [0]           tol       : 1e-06
   linerelaxation : False [0]           maxit     : 50
   nu_{i,1,c,2}   : 0, 2, 1, 2          verb      : 4
   Original grid  :   8 x   8 x   8     => 512 cells
   Coarsest grid  :   2 x   2 x   2     => 8 cells
   Coarsest level :   2 ;   2 ;   2
.
   [hh:mm:ss]  rel. error                  [abs. error, last/prev]   l s
.
       h_
      2h_ \    /
      4h_  \/\/
.
   [10:27:25]   2.284e-02  after   1 F-cycles   [1.275e-06, 0.023]   0 0
   [10:27:25]   1.565e-03  after   2 F-cycles   [8.739e-08, 0.069]   0 0
   [10:27:25]   1.295e-04  after   3 F-cycles   [7.232e-09, 0.083]   0 0
   [10:27:25]   1.197e-05  after   4 F-cycles   [6.685e-10, 0.092]   0 0
   [10:27:25]   1.233e-06  after   5 F-cycles   [6.886e-11, 0.103]   0 0
   [10:27:25]   1.415e-07  after   6 F-cycles   [7.899e-12, 0.115]   0 0
.
   > CONVERGED
   > MG cycles        : 6
   > Final rel. error : 1.415e-07
.
:: emg3d END   :: 10:27:25 :: runtime = 0:00:00













          

      

      

    

  

    
      
          
            
  
multigrid


	
emg3d.solver.multigrid(grid, model, sfield, efield, var, **kwargs)

	Multigrid solver for 3D controlled-source electromagnetic (CSEM) data.

Multigrid solver as presented in [Muld06], including semicoarsening and
line relaxation as presented in and [Muld07].


	The electric field is stored in-place in efield.


	The number of multigrid cycles is stored in var.it.


	The current error (l2-norm) is stored in var.l2.


	The reference error (l2-norm of sfield) is stored in var.l2_refe.




This function is called by solve().


	Parameters

	
	gridemg3d.meshes.TensorMesh

	The grid. See emg3d.meshes.TensorMesh.



	modelemg3d.models.VolumeModel

	The Model. See emg3d.models.VolumeModel.



	sfieldemg3d.fields.SourceField

	The source field. See emg3d.fields.get_source_field().



	efieldemg3d.fields.Field

	The electric field. See emg3d.fields.Field.



	varMGParameters instance

	As returned by multigrid().



	**kwargsRecursion parameters.

	Do not use; only used internally by recursion; level (current
coarsening level) and new_cycmax (new maximum of MG cycles, takes
care of V/W/F-cycling).

















          

      

      

    

  

    
      
          
            
  
smoothing


	
emg3d.solver.smoothing(grid, model, sfield, efield, nu, lr_dir)

	Reducing high-frequency error by smoothing.

Solves the linear equation system \(A x = b\) iteratively using the
Gauss-Seidel method. This acts as smoother or, on the coarsest grid, as a
direct solver.

This is a simple wrapper for the jitted computation in
emg3d.core.gauss_seidel(), emg3d.core.gauss_seidel_x(),
emg3d.core.gauss_seidel_y(), and
emg3d.core.gauss_seidel_z() (@njit can not [yet] access class
attributes). See these functions for more details and corresponding theory.

The electric fields are updated in-place.

This function is called by multigrid().


	Parameters

	
	gridemg3d.meshes.TensorMesh

	Input grid.



	modelemg3d.models.VolumeModel

	Input model.



	sfieldemg3d.fields.SourceField

	Input source field.



	efieldemg3d.fields.Field

	Input electric field.



	nuint

	Number of Gauss-Seidel steps; odd numbers are forward, even numbers are
reversed. E.g., nu=2 is one symmetric Gauss-Seidel iteration, with
a forward and a backward step.



	lr_dirint

	Direction of line relaxation {0, 1, 2, 3, 4, 5, 6, 7}.

















          

      

      

    

  

    
      
          
            
  
restriction


	
emg3d.solver.restriction(grid, model, sfield, residual, sc_dir)

	Downsampling of grid, model, and fields to a coarser grid.

The restriction of the residual is used as source term for the coarse grid.

Corresponds to Equations 8 and 9 in [Muld06] and surrounding text. In the
case of the restriction of the residual, this function is a wrapper for the
jitted functions emg3d.core.restrict_weights() and
emg3d.core.restrict() (@njit can not [yet] access class
attributes). See these functions for more details and corresponding theory.

This function is called by multigrid().


	Parameters

	
	gridemg3d.meshes.TensorMesh

	Input grid.



	modelemg3d.models.VolumeModel

	Input model.



	sfieldemg3d.fields.SourceField

	Input source field.



	sc_dirint

	Direction of semicoarsening (0, 1, 2, or 3).







	Returns

	
	cgridemg3d.meshes.TensorMesh

	Coarse grid.



	cmodelemg3d.models.VolumeModel

	Coarse model.



	csfieldemg3d.fields.SourceField

	Coarse source field. Corresponds to restriction of fine-grid residual.



	cefieldemg3d.fields.Field

	Coarse electric field, complex zeroes.

















          

      

      

    

  

    
      
          
            
  
prolongation


	
emg3d.solver.prolongation(grid, efield, cgrid, cefield, sc_dir)

	Interpolating the electric field from coarse grid to fine grid.

The prolongation from a coarser to a finer grid is the inverse process of
the restriction (restriction()) from a finer to a coarser grid. The
interpolated values of the coarse grid electric field are added to the fine
grid electric field, in-place. Piecewise constant interpolation is used in
the direction of the field, and bilinear interpolation in the other two
directions.

See Equation 10 in [Muld06] and surrounding text.

This function is called by multigrid().


	Parameters

	
	grid, cgridemg3d.meshes.TensorMesh

	Fine and coarse grids.



	efield, cefieldemg3d.fields.Field

	Fine and coarse grid electric fields.



	sc_dirint

	Direction of semicoarsening (0, 1, 2, or 3).

















          

      

      

    

  

    
      
          
            
  
residual


	
emg3d.solver.residual(grid, model, sfield, efield, norm=False)

	Computing the residual.

Returns the complete residual as given in [Muld06], page 636, middle of
the right column:


\[\mathbf{r} = V \left( \mathrm{i}\omega\mu_0\mathbf{J_s}
             + \mathrm{i}\omega\mu_0 \tilde{\sigma} \mathbf{E}
             - \nabla \times \mu_\mathrm{r}^{-1} \nabla \times
               \mathbf{E} \right) .\]

This is a simple wrapper for the jitted computation in
emg3d.core.amat_x() (@njit can not [yet] access class
attributes). See emg3d.core.amat_x() for more details and
corresponding theory.

This function is called by multigrid().


	Parameters

	
	gridemg3d.meshes.TensorMesh

	Input grid.



	modelemg3d.models.VolumeModel

	Input model.



	sfieldemg3d.fields.SourceField

	Input source field.



	efieldemg3d.fields.Field

	Input electric field.



	normbool

	If True, the error (l2-norm) of the residual is returned, not the
residual.







	Returns

	
	residualField

	Returned if norm=False. The residual field;
emg3d.fields.Field instance.



	normfloat

	Returned if norm=True. The error (l2-norm) of the residual

















          

      

      

    

  

    
      
          
            
  
krylov


	
emg3d.solver.krylov(grid, model, sfield, efield, var)

	Krylov Subspace iterative solver for 3D CSEM data.

Using a Krylov subspace iterative solver (defined in var.sslsolver)
implemented in SciPy with or without multigrid as a pre-conditioner
([Muld06]).


	The electric field is stored in-place in efield.


	The current error (l2-norm) is stored in var.l2.


	The reference error (l2-norm of sfield) is stored in var.l2_refe.




This function is called by solve().


	Parameters

	
	gridemg3d.meshes.TensorMesh

	The grid. See emg3d.meshes.TensorMesh.



	modelemg3d.models.VolumeModel

	The Model. See emg3d.models.VolumeModel.



	sfieldemg3d.fields.SourceField

	The source field. See emg3d.fields.get_source_field().



	efieldemg3d.fields.Field

	The electric field. See emg3d.fields.Field.



	varMGParameters instance

	As returned by multigrid().

















          

      

      

    

  

    
      
          
            
  
MGParameters


	
class emg3d.solver.MGParameters(verb: int, cycle: str, sslsolver: str, linerelaxation: int, semicoarsening: int, vnC: tuple, tol: float = 1e-06, maxit: int = 50, nu_init: int = 0, nu_pre: int = 2, nu_coarse: int = 1, nu_post: int = 2, clevel: int = -1, return_info: bool = False)

	Bases: object

Collect multigrid solver settings.

This dataclass is used by the main solve()-routine. See
solve() for a description of the mandatory and optional input
parameters and more information .


	Returns

	
	varclass:MGParameters

	As required by multigrid().









Attributes Summary







	clevel

	



	max_level

	Sets dimension-dependent level variable clevel.



	maxit

	



	nu_coarse

	



	nu_init

	



	nu_post

	



	nu_pre

	



	return_info

	



	tol

	






Methods Summary







	cprint(info, verbosity, **kwargs)

	Conditional printing.



	one_liner(l2_last[, last])

	Print continuously updated one-liner.






Attributes Documentation


	
clevel = -1

	




	
max_level

	Sets dimension-dependent level variable clevel.

Requires at least two cells in each direction (for nCx, nCy, and
nCz).






	
maxit = 50

	




	
nu_coarse = 1

	




	
nu_init = 0

	




	
nu_post = 2

	




	
nu_pre = 2

	




	
return_info = False

	




	
tol = 1e-06

	



Methods Documentation


	
cprint(info, verbosity, **kwargs)

	Conditional printing.

Prints info if self.verb > verbosity.


	Parameters

	
	infostr

	String to be printed.



	verbosityint

	Verbosity of info.



	kwargsoptional

	Arguments passed to print.














	
one_liner(l2_last, last=False)

	Print continuously updated one-liner.


	Parameters

	
	l2_lastfloat

	Current error.



	lastbool

	If True, adds exit_message and finishes line.





















          

      

      

    

  

    
      
          
            
  
RegularGridProlongator


	
class emg3d.solver.RegularGridProlongator(x, y, cxy)

	Bases: object

Prolongate field from coarse to fine grid.

This is a heavily modified and adapted version of
scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator].

The main difference (besides the pre-sets) is that this version allows to
initiate an instance with the coarse and fine grids. This initialize will
compute the required weights, and it has therefore only to be done once.

After this, interpolating values from the coarse to the fine grid can be
carried out much faster.

Simplifications in comparison to
scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator]:


	No sanity checks what-so-ever.


	Only 2D data;


	method='linear';


	bounds_error=False;


	fill_value=None.




It results in a speed-up factor of about 2, independent of grid size, for
this particular case. The prolongation is the second-most expensive part of
multigrid after the smoothing. Trying to improve this further might
therefore be useful.


	Parameters

	
	x, yndarray

	The x/y-coordinates defining the coarse grid.



	cxyndarray of shape (…, 2)

	The ([[x], [y]]).T-coordinates defining the fine grid.









Methods Summary







	__call__(values)

	Return values of coarse grid on fine grid locations.






Methods Documentation


	
__call__(values)

	Return values of coarse grid on fine grid locations.


	Parameters

	
	valuesndarray

	Values corresponding to x/y-coordinates.







	Returns

	
	resultndarray

	Values corresponding to cxy-coordinates.





















          

      

      

    

  

    
      
          
            
  
amat_x


	
emg3d.core.amat_x(rx, ry, rz, ex, ey, ez, eta_x, eta_y, eta_z, zeta, hx, hy, hz)

	Residual without or with source term.

Compute the residual as given in [Muld06] in middle of the right column
on page 636, but without the source term:


\[\mathbf{r} = V \left( \mathrm{i}\omega\mu_0 \tilde{\sigma} \mathbf{E}
             - \nabla \times \mu_\mathrm{r}^{-1} \nabla \times
               \mathbf{E} \right) .\]

The computation is carried out in a matrix-free manner; on said page 636
(or in the Theory of the manual) are the various steps laid out
to discretise the different parts, for instance involved curls. This can
also be understood as the left-hand-side of \(A x = b\), as given in
Equation 2 in [Muld06] (here without the cell volumes V),


\[\mathrm{i}\omega\mu_0 \tilde{\sigma} \mathrm{E}
- \nabla \times \zeta^{-1} \nabla \times \mathrm{E}
= - \mathrm{i} \omega \mu_0 \mathrm{J_s} .\]

It can therefore be used as matvec to create a LinearOperator, which
can be passed to a solver.

It is assumed that ex, ey, and ez have PEC boundaries; otherwise the output
will not have PEC boundaries.

The residuals are subtracted in-place from rx, ry, and rz. That means
that if rx, ry, and rz contain the source field, they will contain
the total residual afterwards; if they are empty fields, they will contain
the negative partial residual afterwards.


	Parameters

	
	rx, ry, rzndarray

	Source field or pre-allocated zero residual field in x-, y-, and
z-directions.



	ex, ey, ezndarray

	Electric fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	eta_x, eta_y, eta_z, zetandarray

	VolumeModel parameters (multiplied by volumes) as obtained from
emg3d.models.VolumeModel().



	hx, hy, hzndarray

	Cell widths in x-, y-, and z-directions.

















          

      

      

    

  

    
      
          
            
  
blocks_to_amat


	
emg3d.core.blocks_to_amat(amat, bvec, middle, left, rhs, im, nC)

	Insert middle, left, and rhs into main arrays amat and bvec.

The banded matrix amat contains the main diagonal and the first five lower
off-diagonals. They are stored one column after the other, in a 6*n
ndarray.

The complete main matrix amat and the middle and left blocks
are given by:

.-0
|X|\   0
0-.-0       left:  middle:  right:
 \|X|\                      (not used)
  0-.-0      0-     .-      0
   \|X|\      \     |X      |\
    0-.-0
 0   \|X|
      0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower





Both, middle and left, are 5x5 matrices. The corresponding
right-hand-side rhs is filled into bvec. The matrices left and
middle provided in a single call are horizontally aligned (not
vertically). The sorting of amat (banded matrix) and bvec are given by:

 amat (66,)             example: n = 11                   bvec (11,)
 --------------                                                 --
|01            |                    FIRST CALL                  01
|02 07         |                    Only `middle` and `rhs`     02
|03 08 13      |                    are used, not `left`.       03
|04 09 14 19   |                                                04
|05 10 15 20 25|                                                05
 -------------- --------------                                  --
| 0 11 16 21 26|31            |     SUBSEQUENT CALLS            06
|   12 17 22 27|32 37         |     (normal case)               07
|      18 23 28|33 38 43      |     Complete `left`,            08
|         24 29|34 39 44 49   |     `middle` and `rhs`          09
|            30|35 40 45 50 55|     are used.                   10
 -------------- -------------- ---                              --
               | 0 41 46 51 56|61   LAST CALL                   11
               |    0  0  0  0| 0   Only top row of `left`
               |       0  0  0| 0   and the first elements
               |          0  0| 0   of `middle` and `rhs`
               |             0| 0   are used.
                -------------- ---
                              | 0

Single zeros (0) show elements in amat which are 0, hence not used.
Their location in amat can be deduced from their neighbours.






	Parameters

	
	amatndarray

	Main banded matrix (stored as array) of length 6*n.



	bvecndarray

	Main right-hand-side of length n.



	middlendarray

	Middle block of size 5x5, as ndarray of length 25. Only
the diagonal and the lower triangular part are used.



	leftndarray

	Left block of size 5x5, as ndarray of length 25. Only the
diagonal and the first row are used.



	rhsndarray

	Corresponding right-hand-side of length 5.



	imint

	Current minus-index of direction of line relaxation, {ixm, iym, izm}.



	nCint

	Total number of cells in direction of line relaxation, {nCx, nCy, nCz}.

















          

      

      

    

  

    
      
          
            
  
gauss_seidel


	
emg3d.core.gauss_seidel(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)

	Gauss-Seidel method.

Solves the linear equation system \(A x = b\) iteratively using the
following method:


\[\mathbf{x}^{(k+1)} =
L_*^{-1} \left(\mathbf{b} - U \mathbf{x}^{(k)} \right) \ ,\]

where \(L_*\) is the lower triangular component, and \(U\) the
strictly upper triangular component, \(A = L_* + U\):


\[\begin{split}L_* = \left[ \begin{array} {cccc}
      a_{11} &   0    & \cdots &    0   \\
      a_{21} & a_{22} & \cdots &    0   \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{n1} & a_{n2} & \cdots & a_{nn}
      \end{array} \right] \ , \quad
U = \left[ \begin{array} {cccc}
         0   & a_{12} & \cdots & a_{1n} \\
         0   &   0    & \cdots & a_{2n} \\
      \vdots & \vdots & \ddots & \vdots \\
         0   &   0    & \cdots &   0
    \end{array} \right] \ .\end{split}\]

On the coarsest grid it acts as direct solver, whereas on the fine grid it
acts as a smoother with only few iterations, defined by \(\nu\) (nu).
Odd numbers of nu use forward ordering, even numbers use backwards
ordering. nu=2 is therefore one symmetric Gauss-Seidel iteration, one
forward ordered iteration followed by one backward ordered iteration.

From [Muld06]: The method proposed by [ArFW00] is chosen as a smoother.
It selects one node of the grid and simultaneously solves for the six
degrees of freedom on the six edges attached to the node. If node
\((x_k, y_l, z_m)\) is selected, the six equations,
\(r_{x;k\pm1/2,l,m} = 0\), \(r_{y;k,l\pm1/2,m} = 0\) and
\(r_{z;k,l,m\pm1/2} = 0\), are solved for \(e_{x;k\pm1/2,l,m}\),
\(e_{y;k,l\pm1/2,m}\) and \(e_{z;k,l,m\pm1/2}\). Here, this
smoother is applied in a symmetric Gauss-Seidel fashion, following the
lexicographical ordering of the nodes \((x_k, y_l, z_m)\), with fastest
index \(k=1, \dots, N_x-1\), intermediate index \(l=1, \dots,
N_y-1\), and slowest index \(m=1, \ldots, N_z-1\).

To actually solve the system of six equations a non-standard Cholesky
factorisation is used, solve().

Tangential components at the boundaries are assumed to be zero (PEC
boundaries).

The result is stored in the provided electric fields ex, ey, and ez.


	Parameters

	
	ex, ey, ezndarray

	Electric fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	sx, sy, sz :

	Source fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	eta_x, eta_y, eta_z, zeta :

	VolumeModel parameters (multiplied by volumes) as obtained from
emg3d.models.VolumeModel().



	hx, hy, hzndarray

	Cell widths in x-, y-, and z-directions.



	nuint

	Number of Gauss-Seidel iterations.

















          

      

      

    

  

    
      
          
            
  
gauss_seidel_x


	
emg3d.core.gauss_seidel_x(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)

	Gauss-Seidel method with line relaxation in x-direction.

This is the equivalent to gauss_seidel(), but with line relaxation in
the x-direction. See gauss_seidel() for more details.

The resulting system A x = b to solve consists of n unknowns (x-vector),
and the corresponding matrix A is a banded matrix with the main diagonal
and five upper and lower diagonals:

.-0
|X|\   0
0-.-0       left:  middle:  right:
 \|X|\                      (not used)
  0-.-0      0-     .-      0
   \|X|\      \     |X      |\
    0-.-0
 0   \|X|
      0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower





The matrix A is complex and symmetric (A = A^T), and therefore only the
main diagonal and the lower five off-diagonals are required.


	The right-hand-side b has length 5*nCx-4 (nCx even).


	The matrix A has length of b and 1+2*5 diagonals; we use for it an array
of length 6*len(b).




The values are computed in rows of 5 lines, with the indicated middle and
left matrices as indicated in the above scheme. These blocks are filled
into the main matrix A and vector b, and subsequently solved with a
non-standard Cholesky factorisation, solve().

Tangential components at the boundaries are assumed to be 0 (PEC
boundaries).

The result is stored in the provided electric fields ex, ey, and ez.


	Parameters

	
	ex, ey, ezndarray

	Electric fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	sx, sy, sz :

	Source fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	eta_x, eta_y, eta_z, zeta :

	VolumeModel parameters (multiplied by volumes) as obtained from
emg3d.models.VolumeModel().



	hx, hy, hzndarray

	Cell widths in x-, y-, and z-directions.



	nuint

	Number of Gauss-Seidel iterations.

















          

      

      

    

  

    
      
          
            
  
gauss_seidel_y


	
emg3d.core.gauss_seidel_y(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)

	Gauss-Seidel method with line relaxation in y-direction.

This is the equivalent to gauss_seidel(), but with line relaxation in
the y-direction. See gauss_seidel() for more details.

The resulting system A x = b to solve consists of n unknowns (x-vector),
and the corresponding matrix A is a banded matrix with the main diagonal
and five upper and lower diagonals:

.-0
|X|\   0
0-.-0       left:  middle:  right:
 \|X|\                      (not used)
  0-.-0      0-     .-      0
   \|X|\      \     |X      |\
    0-.-0
 0   \|X|
      0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower





The matrix A is complex and symmetric (A = A^T), and therefore only the
main diagonal and the lower five off-diagonals are required.


	The right-hand-side b has length 5*nCy-4 (nCy even).


	The matrix A has length of b and 1+2*5 diagonals; we use for it an array
of length 6*len(b).




The values are computed in rows of 5 lines, with the indicated middle and
left matrices as indicated in the above scheme. These blocks are filled
into the main matrix A and vector b, and subsequently solved with a
non-standard Cholesky factorisation, solve().

Note: The smoothing with linerelaxation in y-direction is carried out in
reversed lexicographical order, in order to improve speed (memory access).
All other smoothers (gauss_seidel(), gauss_seidel_x(), and
gauss_seidel_z()) use lexicographical order.

Tangential components at the boundaries are assumed to be 0 (PEC
boundaries).

The result is stored in the provided electric fields ex, ey, and ez.


	Parameters

	
	ex, ey, ezndarray

	Electric fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	sx, sy, sz :

	Source fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	eta_x, eta_y, eta_z, zeta :

	VolumeModel parameters (multiplied by volumes) as obtained from
emg3d.models.VolumeModel().



	hx, hy, hzndarray

	Cell widths in x-, y-, and z-directions.



	nuint

	Number of Gauss-Seidel iterations.

















          

      

      

    

  

    
      
          
            
  
gauss_seidel_z


	
emg3d.core.gauss_seidel_z(ex, ey, ez, sx, sy, sz, eta_x, eta_y, eta_z, zeta, hx, hy, hz, nu)

	Gauss-Seidel method with line relaxation in z-direction.

This is the equivalent to gauss_seidel(), but with line relaxation in
the z-direction. See gauss_seidel() for more details.

The resulting system A x = b to solve consists of n unknowns (x-vector),
and the corresponding matrix A is a banded matrix with the main diagonal
and five upper and lower diagonals:

.-0
|X|\   0
0-.-0       left:  middle:  right:
 \|X|\                      (not used)
  0-.-0      0-     .-      0
   \|X|\      \     |X      |\
    0-.-0
 0   \|X|
      0-.

. 1*1, - 4*1, | 1*4, X 4*4, \ 4*4 upper or lower





The matrix A is complex and symmetric (A = A^T), and therefore only the
main diagonal and the lower five off-diagonals are required.


	The right-hand-side b has length 5*nCz-4 (nCz even).


	The matrix A has length of b and 1+2*5 diagonals; we use for it an array
of length 6*len(b).




The values are computed in rows of 5 lines, with the indicated middle and
left matrices as indicated in the above scheme. These blocks are filled
into the main matrix A and vector b, and subsequently solved with a
non-standard Cholesky factorisation, solve().

Tangential components at the boundaries are assumed to be 0 (PEC
boundaries).

The result is stored in the provided electric fields ex, ey, and ez.


	Parameters

	
	ex, ey, ezndarray

	Electric fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	sx, sy, sz :

	Source fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	eta_x, eta_y, eta_z, zeta :

	VolumeModel parameters (multiplied by volumes) as obtained from
emg3d.models.VolumeModel().



	hx, hy, hzndarray

	Cell widths in x-, y-, and z-directions.



	nuint

	Number of Gauss-Seidel iterations.

















          

      

      

    

  

    
      
          
            
  
restrict


	
emg3d.core.restrict(crx, cry, crz, rx, ry, rz, wx, wy, wz, sc_dir)

	Restriction of residual from fine to coarse grid.

Corresponds to Equation 8 in [Muld06]. The equation for the x-direction,
using the notation \(\{x,y,z\}\) instead of \(\{1,2,3\}\), is given
by


\[\begin{split}r_{x,K+1/2,L,M}^{2h} =
    &\sum_{j_y=-1}^1\sum_{j_z=-1}^1 w_{L,j_y}^y w_{M,j_z}^z \\
    &\times
    \left(r_{x,k+1/2,l+j_y,m+j_z}^h+r_{x,k+3/2,l+j_y,m+j_z}^h\right) .\end{split}\]

The superscripts \(h, 2h\) indicate quantities defined on the coarse
grid and on the fine grid, respectively. The indices \(\{K, L, M\}\)
on the coarse grid correspond to \(\{k, l, m\} = 2\{K, L, M\}\) on the
fine grid. The weights \(w\) are obtained from
restrict_weights().

The restrictions of rx, ry, and rz are stored directly in crx,
cry, and crz.


	Parameters

	
	crx, cry, crzndarray

	Coarse grid {x,y,z}-directed residual (pre-allocated empty arrays).



	rx, ry, rzndarray

	Fine grid {x,y,z}-directed residual.



	wx, wy, wz: tuple

	Tuples containing the weights (wl, w0, wr) as returned from
restrict_weights() for the x-, y-, and z-directions.



	sc_dirint

	Direction of semicoarsening; 0 for no semicoarsening.

















          

      

      

    

  

    
      
          
            
  
restrict_weights


	
emg3d.core.restrict_weights(vectorN, vectorCC, h, cvectorN, cvectorCC, ch)

	Restriction weights for the coarse-grid correction operator.

Corresponds to Equation 9 in [Muld06]. A generalized version of that
equation is given by


\[\begin{split}w_{Q,-1}^v &= \left(v_{q-1/2}^h-v_{Q-1/2}^{2h}\right)/d_{q-1}^v ,\\
w_{Q,0}^v  &= 1 ,\\
w_{Q,1}^v  &= \left(v_{Q+1/2}^{2h}-v_{q+1/2}^h \right)/d_{q+1}^v ,\end{split}\]

where \(d\) are the dual grid cell widths, \(v\) is one of
\(\{x, y, z\}\), and \(Q, q\) the corresponding entries of
\(\{K, L, M\}, \{k, l, m\}\). The superscripts \(h, 2h\) indicate
quantities defined on the coarse grid and on the fine grid, respectively.
The indices \(\{K, L, M\}\) on the coarse grid correspond to
\(\{k, l, m\} = 2\{K, L, M\}\) on the fine grid.

For the dual volume cell widths at the boundaries the scheme of [MoSu94]
is applied, where \(d_0^x = h_{1/2}^x/2\) at \(k = 0\),
\(d_{N_x}^x = h_{N_x-1/2}^x\) at \(k = N_x\), and so on.

The following parameters must all be in the same direction, hence, all must
be either for the x, the y, or the z direction. The returned weights are
for this direction.


	Parameters

	
	vectorN, cvectorNndarray

	Cell edges of the fine (vectorN) and coarse (cvectorN) grids.



	vectorCC, cvectorCCndarray

	Cell centers of the fine (vectorCC) and coarse (cvectorCC) grids.



	h, chndarray

	Cell widths of the fine (h) and coarse (ch) grids.







	Returns

	
	wl, w0, wrndarray

	Left, central, and right weights in the direction provided in the
input.

















          

      

      

    

  

    
      
          
            
  
solve


	
emg3d.core.solve(amat, bvec)

	Solve A x = b using a non-standard Cholesky factorisation.

Solve the system A x = b using a non-standard Cholesky factorisation
without pivoting for a symmetric, complex matrix A tailored to the problem
of the multigrid solver. The matrix A (amat) is an array of length 6*n,
containing the main diagonal and the first five lower off-diagonals
(ordered so that the first element of the main diagonal is followed by the
first elements of the off diagonals, then the second elements and so on).
The vector bvec has length b.

The solution is placed in b (bvec), and A (amat) is replaced by its
decomposition.


	Non-standard Cholesky factorisation.


From [Muld07]: We use a non-standard Cholesky factorisation. The
standard factorisation factors a hermitian matrix A into L L^H, where L
is a lower triangular matrix and L^H its complex conjugate transpose.
In our case, the discretisation is based on the Finite Integration
Technique ([Weil77]) and provides a matrix A that is complex-valued
and symmetric: A = A^T, where the superscript T denotes the transpose.
The line relaxation scheme takes a matrix B that is a subset of A along
the line. B is a complex symmetric band matrix with eleven diagonals.
The non-standard Cholesky factorisation factors the matrix B into L
L^T. Because of the symmetry, only the main diagonal and five lower
diagonal elements of B need to be computed. The Cholesky factorisation
replaces this matrix by L, containing six diagonals, after which the
line relaxation can be carried out by simple back-substitution.

\(A = L D L^T\) factorisation without pivoting:


\[\begin{split}D(j) &= A(j,j)-\sum_{k=1}^{j-1} L(j,k)^2 D(k),\ j=1,..,n ;\\
L(i,j) &= \frac{1}{D(j)}
         \left[A(i,j)-\sum_{k=1}^{j-1} L(i,k)L(j,k)D(k)\right],
         \ i=j+1,..,n .\end{split}\]

A and L are in this case arrays, where \(A(i, j) \rightarrow
A(i+5j)\).






	Solve A x = b.


Solve A x = b, given L which is the result from the factorisation in
the first step (and stored in A), hence, solve L x = b, where x is
stored in b:


\[b(j) = b(j) - \sum_{k=1}^{j-1} L(j,k) x(k), j = 2,..,n .\]








The result is equivalent with simply using numpy.linalg.solve() [https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve], but
faster for the particular use-case of this code.

Note that in this custom solver there is no pivoting, and the diagonals of
the matrix cannot be zero.


	Parameters

	
	amatndarray

	Banded matrix A provided as a vector of length 6*n, containing main
diagonal plus first five lower diagonals.



	bvecndarray

	Right-hand-side vector b of length n.

















          

      

      

    

  

    
      
          
            
  
Meshes, Models, and Fields


emg3d.meshes Module

Everything related to meshes appropriate for the multigrid solver.


Functions







	construct_mesh(frequency, properties, center)

	Return a TensorMesh for given parameters.



	get_origin_widths(frequency, properties, center)

	Return origin and cell widths for given parameters.



	skin_depth(frequency, conductivity[, mu])

	Return skin depth for provided frequency and conductivity.



	wavelength(skin_depth)

	Return the wavelength.



	good_mg_cell_nr([max_nr, max_prime, min_div])

	Returns ‘good’ cell numbers for the multigrid method.



	min_cell_width(skin_depth[, pps, limits])

	Return the minimum cell width.



	get_hx_h0(freq, res, domain[, fixed, …])

	Return cell widths and origin for given parameters.



	get_cell_numbers(max_nr[, max_prime, min_div])

	



	get_stretched_h(min_width, domain, nx[, x0, …])

	Return cell widths for a stretched grid within the domain.



	get_domain([x0, freq, res, limits, …])

	Get domain extent and minimum cell width as a function of skin depth.



	get_hx(alpha, domain, nx, x0[, resp_domain])

	Return cell widths for given input.









Classes







	TensorMesh([h, origin])

	A slightly modified discretize.TensorMesh [https://discretize.simpeg.xyz/en/master/api/generated/discretize.TensorMesh.html#discretize.TensorMesh].











emg3d.models Module

Everything to create model-properties for the multigrid solver.


Classes







	Model(grid[, property_x, property_y, …])

	Create a model instance.



	VolumeModel(grid, model, sfield)

	Return a volume-averaged version of provided model.











emg3d.maps Module

Interpolation routines mapping grids to grids, grids to fields, and fields to
grids.


Functions







	grid2grid(grid, values, new_grid[, method, …])

	Interpolate values located on grid to new_grid.



	interp3d(points, values, new_points, method, …)

	Interpolate values in 3D either linearly or with a cubic spline.



	edges2cellaverages(ex, ey, ez, vol, out_x, …)

	Interpolate fields defined on edges to volume-averaged cell values.









Classes







	MapConductivity()

	Maps σ to computational variable σ (conductivity).



	MapLgConductivity()

	Maps log_10(σ) to computational variable σ (conductivity).



	MapLnConductivity()

	Maps log_e(σ) to computational variable σ (conductivity).



	MapResistivity()

	Maps ρ to computational variable σ (conductivity).



	MapLgResistivity()

	Maps log_10(ρ) to computational variable σ (conductivity).



	MapLnResistivity()

	Maps log_e(ρ) to computational variable σ (conductivity).











emg3d.fields Module

Everything related to the multigrid solver that is a field: source field,
electric and magnetic fields, and fields at receivers.


Functions







	get_source_field(grid, src, freq[, strength])

	Return the source field.



	get_receiver(grid, values, coordinates[, …])

	Return values corresponding to grid at coordinates.



	get_receiver_response(grid, field, rec)

	Return the field (response) at receiver coordinates.



	get_h_field(grid, model, field)

	Return magnetic field corresponding to provided electric field.









Classes







	Field

	Create a Field instance with x-, y-, and z-views of the field.



	SourceField

	Create a Source-Field instance with x-, y-, and z-views of the field.














          

      

      

    

  

    
      
          
            
  
construct_mesh


	
emg3d.meshes.construct_mesh(frequency, properties, center, domain=None, vector=None, seasurface=None, **kwargs)

	Return a TensorMesh for given parameters.

The constructed mesh is frequency- and conductivity-dependent, where
properties are turned into conductivities through the provided
mapping, which is 'Resistivity' by default. Some details are
explained in other functions:


	The minimum cell width \(\Delta_\text{min}\) is a function of
frequency, properties[0], min_width_pps, and
min_width_limits, see Equation (34).


	The skin depth \(\delta\) is a function of frequency and
properties, see Equation (32).


	The wavelength \(\lambda\) is a function of frequency and
properties, see Equation (33).




The relation of the survey domain, computational domain, and buffer zone is
shown in  Figure 12 for a x-z-section; the y-direction
behaves the same as the x-direction (the figures are only visible in the
web version on https://emg3d.rtfd.io).


[image: Sketch for automatic gridding.]
Figure 12: Relation between survey domain (Ds, domain), computational domain
(Dc), and buffer zone. The survey domain should contain all sources and
receivers as well as any important feature that should be represented in
the data. The buffer zone is calculated as a function of wavelength with
the provided property in the given direction.



By default, the buffer zone around the survey domain is one wavelength.
This means that the signal has to travel two wavelengths to get from the
end of the survey domain to the end of the computational domain and back.
This approach is quite conservative and on the safe side. You can reduce
the buffer thickness if you know what you are doing. There are three
parameters which influence the thickness of the buffer for a given
frequency: properties, which is used to calculate the skin depth and
the wavelength, lambda_factor (default is 1) which sets how many times
the wavelength is the thickness of the buffer (relative factor), and
max_buffer, which is an absolute maximum for the buffer thickness. A
graphical illustration is given in Figure 13.


[image: Sketch for the buffer zone.]
Figure 13: The thickness of the buffer zone (B) for (I)
lambda_from_center=False (default) and for (II)
lambda_from_center=True. The lambda_factor
(\(\lambda_{fact}\)) is a simple scaling factor for the wavelength
\(\lambda\). The max_buffer is an absolute limitation.




	Parameters

	
	frequencyfloat

	Frequency (Hz) to calculate skin depth; both the minimum cell width and
the extent of the buffer zone, and therefore of the computational
domain, are a function of skin depth.



	propertiesfloat or list

	Properties to calculate the skin depths. The properties can be either
resistivities, conductivities, or the logarithm (natural or base 10)
thereof. By default it assumes resistivities, but it can be changed
with the parameter mapping.

Four formats are recognized:


	1: Same property for everything;


	2: [min_width, buffer (+/-)] for all directions;


	4: [min_width, xy-buffer (+/-), z-, z+];


	7: [min_width, x-, x+, y-, y+, z-, z+].




The property min_width is usually the property at the center,
hence at the source location. The other properties are used to define
the extent of the buffer zone around the survey domain in the
respective directions.



	centertuple

	Tuple (or list, ndarray) of three floats for (x, y, z). The mesh is
centered around this point, which means that here is the smallest cell.
Usually this is the source location.



	domaintuple of lists, list, or None, optional

	Contains the survey-domain limits. This domain should include all
source and receiver positions as well as any important feature of the
model. Format: ([xmin, xmax], [ymin, ymax], [zmin, zmax]).

It can be None, or individual lists can be None (e.g., (None, None,
[zmin, zmax])), in which case you have to provide a vector, which
is then assumed to span exactly the domain. If only one list is
provided it is applied to all dimensions.



	distancetuple of lists, list, or None, optional

	An alternative to domain: Instead of defining the domain in
absolute values, they are defined here as distance from the center.
Format: ([xl, xr], [yl, yr], [zd, zu]). From this the domain is
given as ([cx-xl, cx+xr], [cy-yl, cy+yr], [cz-zd, cz+zu]), where
center=(cx, cy, cz).



	vectortuple of three ndarrays, ndarray, or None, optional

	Contains vectors of mesh-edges that should be used. If provided, the
vector MUST at least include all of the survey domain. If domain
is not provided, it is defined as the minimum/maximum of the provided
vector. Format: (xvector, yvector, zvector).

It can be None, or individual ndarrays can be None (e.g., (xvector,
yvector, None)), in which case you have to provide a domain. If
only one ndarray is provided it is applied to all dimensions.



	seasurfacefloat, optional

	Air-sea interface. This has only to be set in the marine case, when the
mesh in z-direction is sought for (and the interface is not contained
in vector). If set, it will ensure that at the sea surface is an
actual boundary. It has to be bigger then the lower limit of the survey
domain.
Default is None.



	stretchinglist or tuple of lists, optional

	Maximum stretching factors in the form of [max Ds, max Dc]: the
first value is the maximum stretching for the survey domain (default is
1.0), the second value is the maximum stretching for the buffer zone
(default is 1.5). If a list is provided the same is used for all three
dimension. Alternatively a tuple of three lists can be provided, (x,
y, z). Note that the first value has no influence on dimensions where
a vector is provided.



	min_width_limitsfloat, list or None, optional

	Passed through min_cell_width() as limits.
A tuple of three can be provided for direction dependent values.
Note that this value has no influence on dimensions where a vector
is provided.

Default is None.



	min_width_ppsfloat or int, optional

	Passed through min_cell_width() as pps.
A tuple of three can be provided for direction dependent values.
Note that this value has no influence on dimensions where a vector
is provided.

Default is 3.



	lambda_factorfloat, optional

	The buffer is taken as one wavelength from the survey domain. This can
be regarded as quite conservative (but safe). The parameter
lambda_factor can be used to reduce (or increase) this factor.
Default is 1.0.



	max_bufferfloat, optional

	Maximum thickness of the buffer zone around survey domain. If
lambda_from_center=True, this is the maximum distance from the
center to the end of the computational domain.
Default is 100,000 (100 km).



	lambda_from_centerbool, optional

	Flag how to compute the extent of the computational mesh as a function
of wavelength:


	False (default): The distance from the edge of the survey domain to
the edge of the computational domain is one wavelength.


	True: The distance from the center to the edge of the computational
domain and back to the end of the survey domain is two wavelengths.






	mappingstr or map, optional

	Defines what type the input property_{x;y;z}-values correspond to.
By default, they represent resistivities (Ohm.m). The implemented
mappings are:


	‘Conductivity’; σ (S/m),


	‘LgConductivity’; log_10(σ),


	‘LnConductivity’; log_e(σ),


	‘Resistivity’; ρ (Ohm.m); Default,


	‘LgResistivity’; log_10(ρ),


	‘LnResistivity’; log_e(ρ).






	cell_numberslist, optional

	List of possible numbers of cells. See good_mg_cell_nr().
Default is good_mg_cell_nr(1024, 5, 3), which corresponds to
numbers 16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384,
512, 640, 768, 1024.



	verbint, optional

	Verbosity, -1 (error); 0 (warning), 1 (info), 2 (verbose).
Default = 0 (Warnings only).







	Returns

	
	originfloat

	Origin of the mesh.



	widthsndarray

	Cell widths of mesh.

















          

      

      

    

  

    
      
          
            
  
get_origin_widths


	
emg3d.meshes.get_origin_widths(frequency, properties, center, domain=None, vector=None, seasurface=None, **kwargs)

	Return origin and cell widths for given parameters.

This function works in one dimension only, and is used by
construct_mesh() once in each direction. It is recommended to use
directly function construct_mesh(), which returns a
TensorMesh.

All the parameters are described in construct_mesh(). Described here
are only the differences.


	Parameters

	
	Alldescription

	All parameters are described in construct_mesh(). The only
difference is that here only variables for one direction are accepted.



	raise_errorbool, optional

	If True, an error is raised if no suitable grid is found. Otherwise it
just prints a message and returns None’s.
Default is True.







	Returns

	
	originfloat

	Origin of the mesh.



	widthsndarray

	Cell widths of mesh.

















          

      

      

    

  

    
      
          
            
  
skin_depth


	
emg3d.meshes.skin_depth(frequency, conductivity, mu=1.25663706212e-06)

	Return skin depth for provided frequency and conductivity.

The skin depth \(\delta\) (m) is given by


(32)\[\delta = \sqrt{\frac{2}{\omega\sigma\mu}}\ ,\]

where \(\omega=2\pi f\) is angular frequency of frequency \(f\)
(Hz), \(\sigma\) is conductivity (S/m), and \(\mu\) is magnetic
permeability (H/m).


	Parameters

	
	frequencyfloat

	Frequency (Hz).



	conductivityfloat

	Conductivity (S/m).



	mufloat, optional

	Magnetic permeability (H/m); default is \(\mu_0\).







	Returns

	
	skindepthfloat

	Skin depth (m).

















          

      

      

    

  

    
      
          
            
  
wavelength


	
emg3d.meshes.wavelength(skin_depth)

	Return the wavelength.

The wavelength \(\lambda\) (m) is given by


(33)\[\lambda = 2\pi\delta\ .\]

The skin depth \(\delta\) is a function of frequency and conductivity
and is given by skin_depth(), Equation (32).


	Parameters

	
	skin_depthfloat or ndarray.

	Skin depth (m).







	Returns

	
	wavelengthfloat or ndarray

	Wavelength (m).

















          

      

      

    

  

    
      
          
            
  
good_mg_cell_nr


	
emg3d.meshes.good_mg_cell_nr(max_nr=1024, max_prime=5, min_div=3)

	Returns ‘good’ cell numbers for the multigrid method.

‘Good’ cell numbers are numbers which can be divided by 2 as many times as
possible. At the end there will be a low prime number.

The function adds all numbers \(p 2^n \leq M\) for \(p={2, 3, ...,
p_\text{max}}\) and \(n={n_\text{min}, n_\text{min}+1, ..., \infty}\);
\(M, p_\text{max}, n_\text{min}\) correspond to max_nr, max_prime,
and min_div, respectively.


	Parameters

	
	max_nrint, optional

	Maximum number of cells.
Default is 1024.



	max_primeint, optional

	Highest permitted prime number p for p*2^n. {2, 3, 5, 7} are good upper
limits in order to avoid too big lowest grids in the multigrid method.
Default is 5.



	min_divint, optional

	Minimum times the number can be divided by two.
Default is 3.







	Returns

	
	numbersarray

	Array containing all possible cell numbers from lowest to highest.

















          

      

      

    

  

    
      
          
            
  
min_cell_width


	
emg3d.meshes.min_cell_width(skin_depth, pps=3, limits=None)

	Return the minimum cell width.

The minimum cell width is defined by the desired points per skin depth,


(34)\[\Delta_\text{min} =
\text{limits[0]} \le \frac{\delta}{\text{pps}} \le \text{limits[1]} \ .\]

The skin depth \(\delta\) is a function of frequency and conductivity
and is given by skin_depth(), Equation (32).


	Parameters

	
	skin_depthfloat

	Skin depth (m).



	ppsint

	Points per skin depth.



	limitsNone, float, or list of two floats

	Limits on minimum width:


	None: No limits.


	float: Returns limits as dmin.


	[min, max]: dmin is limited to this range.










	Returns

	
	dminfloat

	Minimum cell width (m).

















          

      

      

    

  

    
      
          
            
  
get_hx_h0


	
emg3d.meshes.get_hx_h0(freq, res, domain, fixed=0.0, possible_nx=None, min_width=None, pps=3, alpha=None, max_domain=100000.0, raise_error=True, verb=1, return_info=False)

	Return cell widths and origin for given parameters.

Returns cell widths for the provided frequency, resistivity, domain extent,
and other parameters using a flexible amount of cells. See input parameters
for more details. A maximum of three hard/fixed boundaries can be provided
(one of which is the grid center).

The minimum cell width is computed through \(\delta/\rm{pps}\), where
the skin depth is given by \(\delta = 503.3 \sqrt{\rho/f}\), and the
parameter pps stands for ‘points-per-skindepth’. The minimum cell width
can be restricted with the parameter min_width.

The actual computation domain adds a buffer zone around the (survey)
domain. The thickness of the buffer is six times the skin depth. The field
is basically zero after two wavelengths. A wavelength is
\(2\pi\delta\), hence roughly 6 times the skin depth. Taking a factor 6
gives therefore almost two wavelengths, as the field travels to the
boundary and back. The actual buffer thickness can be steered with the
res parameter.

One has to take into account that the air is very resistive, which has to
be considered not just in the vertical direction, but also in the
horizontal directions, as the airwave will bounce back from the sides
otherwise. In the marine case this issue reduces with increasing water
depth.


	Parameters

	
	freqfloat

	Frequency (Hz) to compute the skin depth. The skin depth is a concept
defined in the frequency domain. If a negative frequency is provided,
it is assumed that the computation is carried out in the Laplace
domain. To compute the skin depth, the value of freq is then
multiplied by \(-2\pi\), to simulate the closest
frequency-equivalent.



	resfloat or list

	Resistivity (Ohm m) to compute the skin depth. The skin depth is
used to compute the minimum cell width and the boundary thicknesses.
Up to three resistivities can be provided:


	float: Same resistivity for everything;


	[min_width, boundaries];


	[min_width, left boundary, right boundary].






	domainlist

	Contains the survey-domain limits [min, max]. The actual computation
domain consists of this domain plus a buffer zone around it, which
depends on frequency and resistivity.



	fixedlist, optional

	Fixed boundaries, one, two, or maximum three values. The grid is
centered around the first value. Hence it is the center location with
the smallest cell. Two more fixed boundaries can be added, at most one
on each side of the first one.
Default is 0.



	possible_nxlist, optional

	List of possible numbers of cells. See good_mg_cell_nr().
Default is good_mg_cell_nr(1024, 5, 3), which corresponds to
numbers 16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384,
512, 640, 768, 1024.



	min_widthfloat, list or None, optional

	Minimum cell width restriction:


	None : No restriction;


	float : Fixed to this value, ignoring skin depth and pps.


	list [min, max] : Lower and upper bounds.




Default is None.



	ppsint, optional

	Points per skindepth; minimum cell width is computed via
dmin = skindepth/pps.
Default = 3.



	alphalist, optional

	Maximum alpha and step size to find a good alpha. The first value is
the maximum alpha of the survey domain, the second value is the maximum
alpha for the buffer zone, and the third value is the step size.
Default = [1, 1.5, .01], hence no stretching within the survey domain
and a maximum stretching of 1.5 in the buffer zone; step size is 0.01.



	max_domainfloat, optional

	Maximum computation domain from fixed[0] (usually source position).
Default is 100,000.



	raise_errorbool, optional

	If True, an error is raised if no suitable grid is found. Otherwise it
just prints a message and returns None’s.
Default is True.



	verbint, optional

	Verbosity, 0 or 1.
Default = 1.



	return_infobool

	If True, a dictionary is returned with some grid info (min and max
cell width and alpha).







	Returns

	
	hxndarray

	Cell widths of mesh.



	x0float

	Origin of the mesh.



	infodict

	Dictionary with mesh info; only if return_info=True.

Keys:


	dmin: Minimum cell width;


	dmax: Maximum cell width;


	amin: Minimum alpha;


	amax: Maximum alpha.













See also


	get_stretched_h

	Get hx for a fixed number nx and within a fixed domain.















          

      

      

    

  

    
      
          
            
  
get_cell_numbers


	
emg3d.meshes.get_cell_numbers(max_nr, max_prime=5, min_div=3)

	







          

      

      

    

  

    
      
          
            
  
get_stretched_h


	
emg3d.meshes.get_stretched_h(min_width, domain, nx, x0=0, x1=None, resp_domain=False)

	Return cell widths for a stretched grid within the domain.

Returns nx cell widths within domain, where the minimum cell width is
min_width. The cells are not stretched within x0 and x1, and outside
uses a power-law stretching. The actual stretching factor and the number of
cells left and right of x0 and x1 are found in a minimization process.

The domain is not completely respected. The starting point of the domain
is, but the endpoint of the domain might slightly shift (this is more
likely the case for small nx, for big nx the shift should be small).
The new endpoint can be obtained with domain[0]+np.sum(hx). If you want
the domain to be respected absolutely, set resp_domain=True. However,
be aware that this will introduce one stretch-factor which is different
from the other stretch factors, to accommodate the restriction. This
one-off factor is between the left- and right-side of x0, or, if x1 is
provided, just after x1.


	Parameters

	
	min_widthfloat

	Minimum cell width. If x1 is provided, the actual minimum cell width
might be smaller than min_width.



	domainlist

	[start, end] of model domain.



	nxint

	Number of cells.



	x0float

	Center of the grid. x0 is restricted to domain.
Default is 0.



	x1float

	If provided, then no stretching is applied between x0 and x1. The
non-stretched part starts at x0 and stops at the first possible
location at or after x1. x1 is restricted to domain. This will
min_width so that an integer number of cells fit within x0 and x1.



	resp_domainbool

	If False (default), then the domain-end might shift slightly to assure
that the same stretching factor is applied throughout. If set to True,
however, the domain is respected absolutely. This will introduce one
stretch-factor which is different from the other stretch factors, to
accommodate the restriction. This one-off factor is between the left-
and right-side of x0, or, if x1 is provided, just after x1.







	Returns

	
	hxndarray

	Cell widths of mesh.










See also


	get_hx_x0

	Get hx and x0 for a flexible number of nx with given bounds.















          

      

      

    

  

    
      
          
            
  
get_domain


	
emg3d.meshes.get_domain(x0=0, freq=1, res=0.3, limits=None, min_width=None, fact_min=0.2, fact_neg=5, fact_pos=None)

	Get domain extent and minimum cell width as a function of skin depth.

Returns the extent of the computation domain and the minimum cell width as
a multiple of the skin depth, with possible user restrictions on minimum
computation domain and range of possible minimum cell widths.


\[\begin{split}\delta &= 503.3 \sqrt{\frac{\rho}{f}} , \\
x_\text{start} &= x_0-k_\text{neg}\delta , \\
x_\text{end} &= x_0+k_\text{pos}\delta , \\
h_\text{min} &= k_\text{min} \delta .\end{split}\]


	Parameters

	
	x0float

	Center of the computation domain. Normally the source location.
Default is 0.



	freqfloat

	Frequency (Hz) to compute the skin depth. The skin depth is a concept
defined in the frequency domain. If a negative frequency is provided,
it is assumed that the computation is carried out in the Laplace
domain. To compute the skin depth, the value of freq is then
multiplied by \(-2\pi\), to simulate the closest
frequency-equivalent.

Default is 1 Hz.



	resfloat, optional

	Resistivity (Ohm m) to compute skin depth.
Default is 0.3 Ohm m (sea water).



	limitsNone or list

	[start, end] of model domain. This extent represents the minimum extent
of the domain. The domain is therefore only adjusted if it has to reach
outside of [start, end].
Default is None.



	min_widthNone, float, or list of two floats

	Minimum cell width is computed as a function of skin depth:
fact_min*sd. If min_width is a float, this is used. If a list of
two values [min, max] are provided, they are used to restrain
min_width. Default is None.



	fact_min, fact_neg, fact_posfloats

	The skin depth is multiplied with these factors to estimate:



	Minimum cell width (fact_min, default 0.2)


	Domain-start (fact_neg, default 5), and


	Domain-end (fact_pos, defaults to fact_neg).













	Returns

	
	h_minfloat

	Minimum cell width.



	domainlist

	Start- and end-points of computation domain.

















          

      

      

    

  

    
      
          
            
  
get_hx


	
emg3d.meshes.get_hx(alpha, domain, nx, x0, resp_domain=True)

	Return cell widths for given input.

Find the number of cells left (nl) and right (nr) of the center
x0 for the provided alpha. For this, we solve


\[\frac{x_\text{max}-x_0}{x_0-x_\text{min}} =
\frac{a^\text{nr}-1}{a^\text{nl}-1}\]

where \(a = 1+\alpha\).


	Parameters

	
	alphafloat

	Stretching factor a is given by a=1+alpha.



	domainlist

	[x_min, x_max] of model domain.



	nxint

	Number of cells.



	x0float

	Center of the grid. x0 is restricted to domain.



	resp_domainbool

	If False, then the domain-end might shift slightly to assure that the
same stretching factor is applied throughout. If set to True (default),
however, the domain is respected absolutely. This will introduce one
stretch-factor which is different from the other stretch factors, to
accommodate the restriction. This one-off factor is between the left-
and right-side of x0, or, if x1 is provided, just after x1.







	Returns

	
	hxndarray

	Cell widths of mesh. All points are given by
np.r_[xmin, xmin+np.cumsum(hx)]

















          

      

      

    

  

    
      
          
            
  
TensorMesh


	
class emg3d.meshes.TensorMesh(h=None, origin=None, **kwargs)

	Bases: discretize.tensor_mesh.TensorMesh, emg3d.meshes._TensorMesh

A slightly modified discretize.TensorMesh [https://discretize.simpeg.xyz/en/master/api/generated/discretize.TensorMesh.html#discretize.TensorMesh].


Adds a few attributes (__eq__, copy, to_dict, and from_dict) to the
discretize.TensorMesh [https://discretize.simpeg.xyz/en/master/api/generated/discretize.TensorMesh.html#discretize.TensorMesh].

Falls back to a minimal TensorMesh if discretize is not installed.
Nothing fancy is possible with the minimal TensorMesh, particularly NO
plotting nor nice repr-functions.





	Parameters

	
	hlist of three ndarrays

	
Cell widths in [x, y, z] directions.





	originndarray of dimension (3, )

	Origin (x, y, z).
(For backwards compatibility one can also provide x0 instead of
origin, but this will be removed in the future.)







	**Required Properties:**

	

	* **axis_u (Vector3): Vector orientation of u-direction. For more details see the docs for the rotation_matrix [https://discretize.simpeg.xyz/en/master/api/generated/discretize.base.BaseMesh.html#discretize.base.BaseMesh.rotation_matrix] property., a 3D Vector of <class ‘float’> with shape (3), Default: X**

	

	* **axis_v (Vector3): Vector orientation of v-direction. For more details see the docs for the rotation_matrix [https://discretize.simpeg.xyz/en/master/api/generated/discretize.base.BaseMesh.html#discretize.base.BaseMesh.rotation_matrix] property., a 3D Vector of <class ‘float’> with shape (3), Default: Y**

	

	* **axis_w (Vector3): Vector orientation of w-direction. For more details see the docs for the rotation_matrix [https://discretize.simpeg.xyz/en/master/api/generated/discretize.base.BaseMesh.html#discretize.base.BaseMesh.rotation_matrix] property., a 3D Vector of <class ‘float’> with shape (3), Default: Z**

	

	* **h (a tuple of Array): h is a list containing the cell widths of the tensor mesh in each dimension., a tuple (each item is a list or numpy array of <class ‘float’> with shape (*)) with length between 1 and 3**

	

	* **origin (Array): origin of the mesh (dim, ), a list or numpy array of <class ‘float’>, <class ‘int’> with shape (*)**

	

	* **reference_system (String): The type of coordinate reference frame. Can take on the values cartesian, cylindrical, or spherical. Abbreviations of these are allowed., a unicode string, Default: cartesian**

	







Methods Summary







	copy()

	Return a copy of the TensorMesh.



	from_dict(inp)

	Convert dictionary into TensorMesh instance.



	to_dict([copy])

	Store the necessary information of the TensorMesh in a dict.






Methods Documentation


	
copy()

	Return a copy of the TensorMesh.






	
classmethod from_dict(inp)

	Convert dictionary into TensorMesh instance.


	Parameters

	
	inpdict

	Dictionary as obtained from TensorMesh.to_dict().
The dictionary needs the keys hx, hy, hz, and origin.







	Returns

	
	objTensorMesh instance

	












	
to_dict(copy=False)

	Store the necessary information of the TensorMesh in a dict.













          

      

      

    

  

    
      
          
            
  
Model


	
class emg3d.models.Model(grid, property_x=1.0, property_y=None, property_z=None, mu_r=None, epsilon_r=None, mapping='Resistivity', **kwargs)

	Bases: object

Create a model instance.

Class to provide model parameters (x-, y-, and z-directed properties
[resistivity or conductivity; linear or on log_10/log_e-scale], electric
permittivity and magnetic permeability) to the solver. Relative magnetic
permeability \(\mu_\mathrm{r}\) is by default set to one and electric
permittivity \(\varepsilon_\mathrm{r}\) is by default set to zero, but
they can also be provided (isotropically). Keep in mind that the multigrid
method as implemented in emg3d only works for the diffusive
approximation. As soon as the displacement-part in the Maxwell’s equations
becomes too dominant it will fail (high frequencies or very high electric
permittivity).


	Parameters

	
	gridTensorMesh

	Grid on which to apply model.



	property_{x;y;z}float or ndarray; default to 1.

	Material property in x-, y-, and z-directions. If ndarray, they must
have the shape of grid.vnC (F-ordered) or grid.nC.

By default, property refers to electrical resistivity. However, this
can be changed with an appropriate map. For more info, see the
description of the parameter mapping. The internals of emg3d work,
irrelevant of the map, with electrical conductivities.

Resistivities and conductivities have to be bigger than zero and
smaller than infinity (if provided on a linear scale; not on
logarithmic scales).



	mu_rNone, float, or ndarray

	Relative magnetic permeability (isotropic). If ndarray it must have the
shape of grid.vnC (F-ordered) or grid.nC. Default is None, which
corresponds to 1., but avoids the computation of zeta. Magnetic
permeability has to be bigger than zero and smaller than infinity.



	epsilon_rNone, float, or ndarray

	Relative electric permittivity (isotropic). If ndarray it must have the
shape of grid.vnC (F-ordered) or grid.nC. The displacement part is
completely neglected (diffusive approximation) if set to None, which is
the default. Electric permittivity has to be bigger than zero and
smaller than infinity.



	mappingstr

	Defines what type the input property_{x;y;z}-values correspond to. By
default, they represent resistivities (Ohm.m). The implemented types
are:


	‘Conductivity’; σ (S/m),


	‘LgConductivity’; log_10(σ),


	‘LnConductivity’; log_e(σ),


	‘Resistivity’; ρ (Ohm.m); Default,


	‘LgResistivity’; log_10(ρ),


	‘LnResistivity’; log_e(ρ).












Attributes Summary







	epsilon_r

	Electric permittivity.



	mu_r

	Magnetic permeability.



	property_x

	Property in x-direction.



	property_y

	Property in y-direction.



	property_z

	Property in z-direction.






Methods Summary







	copy()

	Return a copy of the Model.



	from_dict(inp)

	Convert the dictionary into a Model instance.



	interpolate2grid(grid, new_grid, …)

	Interpolate Model located on grid to new_grid.



	to_dict([copy])

	Store the necessary information of the Model in a dict.






Attributes Documentation


	
epsilon_r

	Electric permittivity.






	
mu_r

	Magnetic permeability.






	
property_x

	Property in x-direction.






	
property_y

	Property in y-direction.






	
property_z

	Property in z-direction.





Methods Documentation


	
copy()

	Return a copy of the Model.






	
classmethod from_dict(inp)

	Convert the dictionary into a Model instance.


	Parameters

	
	inpdict

	Dictionary as obtained from Model.to_dict().
The dictionary needs the keys property_x, property_y,
property_z, mu_r, epsilon_r, vnC, and mapping.







	Returns

	
	objModel instance

	












	
interpolate2grid(grid, new_grid, **grid2grid_opts)

	Interpolate Model located on grid to new_grid.


	Parameters

	
	grid, new_gridTensorMesh

	Input and output model grids;
emg3d.meshes.TensorMesh instances.



	grid2grid_optsdict

	Passed through to maps.grid2grid(). Defaults are
method=’volume’, log=True, and extrapolate=True.







	Returns

	
	NewModelModel

	New Model instance on new_grid.














	
to_dict(copy=False)

	Store the necessary information of the Model in a dict.













          

      

      

    

  

    
      
          
            
  
VolumeModel


	
class emg3d.models.VolumeModel(grid, model, sfield)

	Bases: object

Return a volume-averaged version of provided model.

Takes a Model instance and returns the volume averaged values. This is used
by the solver internally.


\[\eta_{\{x,y,z\}} = -V\mathrm{i}\omega\mu_0
      \left(\rho^{-1}_{\{x,y,z\}} + \mathrm{i}\omega\varepsilon\right)\]


\[\zeta = V\mu_\mathrm{r}^{-1}\]


	Parameters

	
	gridTensorMesh

	Grid on which to apply model.



	modelModel

	Model to transform to volume-averaged values.



	sfieldSourceField

	A VolumeModel is frequency-dependent. The frequency-information is taken
from the provided source filed.









Attributes Summary







	eta_x

	eta in x-direction.



	eta_y

	eta in y-direction.



	eta_z

	eta in z-direction.



	zeta

	zeta.






Methods Summary







	calculate_eta(name, grid, model, field)

	eta: volume multiplied with conductivity.



	calculate_zeta(name, grid, model)

	zeta: volume divided by mu_r.






Attributes Documentation


	
eta_x

	eta in x-direction.






	
eta_y

	eta in y-direction.






	
eta_z

	eta in z-direction.






	
zeta

	zeta.





Methods Documentation


	
static calculate_eta(name, grid, model, field)

	eta: volume multiplied with conductivity.






	
static calculate_zeta(name, grid, model)

	zeta: volume divided by mu_r.













          

      

      

    

  

    
      
          
            
  
grid2grid


	
emg3d.maps.grid2grid(grid, values, new_grid, method='linear', extrapolate=True, log=False)

	Interpolate values located on grid to new_grid.

Note 1:
The default method is ‘linear’, because it works with fields and model
parameters. However, recommended are ‘volume’ for model parameters and
‘cubic’ for fields.

Note 2:
For model parameters with method=’volume’ the result is quite different
if you provide resistivity, conductivity, or the logarithm of any of the
two. The recommended way is to provide the logarithm of resistivity or
conductivity, in which case the output of one is indeed the inverse of the
output of the other.


	Parameters

	
	grid, new_gridTensorMesh

	Input and output model grids;
TensorMesh instances.



	valuesndarray

	Model parameters; emg3d.fields.Field instance, or a particular
field (e.g. field.fx). For fields the method cannot be ‘volume’.



	method{<’linear’>, ‘volume’, ‘cubic’}, optional

	The method of interpolation to perform. The volume averaging method
ensures that the total sum of the property stays constant.

Volume averaging is only implemented for model parameters, not for
fields. The method ‘cubic’ requires at least three points in any
direction, otherwise it will fall back to ‘linear’.

Default is ‘linear’, because it works with fields and model parameters.
However, recommended are ‘volume’ for model parameters and ‘cubic’ for
fields.



	extrapolatebool

	If True, points on new_grid which are outside of grid are filled by
the nearest value (if method='cubic') or by extrapolation (if
method='linear'). If False, points outside are set to zero.

For method='volume' it always uses the nearest value for points
outside of grid.

Default is True.



	logbool

	If True, the interpolation is carried out on a log10-scale; hence the
same as 10**grid2grid(grid, np.log10(values), ...).
Default is False.







	Returns

	
	new_valuesndarray

	Values corresponding to new_grid.










See also


	get_receiver

	Interpolation of model parameters or fields to (x, y, z).















          

      

      

    

  

    
      
          
            
  
interp3d


	
emg3d.maps.interp3d(points, values, new_points, method, fill_value, mode)

	Interpolate values in 3D either linearly or with a cubic spline.

Return values corresponding to a regular 3D grid defined by points on
new_points.

This is a modified version of scipy.interpolate.interpn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interpn.html#scipy.interpolate.interpn], using
scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator] if method='linear'
and a custom-wrapped version of scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates] if
method='cubic'. If speed is important then choose ‘linear’, as it can
be significantly faster.


	Parameters

	
	pointstuple of ndarray of float, with shapes ((nx, ), (ny, ) (nz, ))

	The points defining the regular grid in three dimensions.



	valuesarray_like, shape (nx, ny, nz)

	The data on the regular grid in three dimensions.



	new_pointstuple (rec_x, rec_y, rec_z)

	Coordinates (x, y, z) of new points.



	method{‘cubic’, ‘linear’}, optional

	The method of interpolation to perform, ‘linear’ or ‘cubic’. Default is
‘cubic’ (forced to ‘linear’ if there are less than 3 points in any
direction).



	fill_valuefloat or None

	Passed to scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator] if
method='linear': The value to use for points outside of the
interpolation domain. If None, values outside the domain are
extrapolated.



	mode{‘constant’, ‘nearest’, ‘mirror’, ‘reflect’, ‘wrap’}

	Passed to scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates] if method='cubic':
Determines how the input array is extended beyond its boundaries.







	Returns

	
	new_valuesndarray

	Values corresponding to new_points.

















          

      

      

    

  

    
      
          
            
  
edges2cellaverages


	
emg3d.maps.edges2cellaverages(ex, ey, ez, vol, out_x, out_y, out_z)

	Interpolate fields defined on edges to volume-averaged cell values.


	Parameters

	
	ex, ey, ezndarray

	Electric fields in x-, y-, and z-directions, as obtained from
emg3d.fields.Field.



	volndarray

	Volumes of the grid, as obtained from emg3d.meshes.TensorMesh.



	out_x, out_y, out_zndarray

	Arrays where the results are placed (per direction).

















          

      

      

    

  

    
      
          
            
  
MapConductivity


	
class emg3d.maps.MapConductivity

	Bases: emg3d.maps._Map

Maps σ to computational variable σ (conductivity).


	forward: x = σ


	backward: σ = x




Methods Summary







	backward(mapped)

	Mapping to conductivity.



	derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.



	forward(conductivity)

	Conductivity to mapping.






Methods Documentation


	
backward(mapped)

	Mapping to conductivity.






	
derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.






	
forward(conductivity)

	Conductivity to mapping.













          

      

      

    

  

    
      
          
            
  
MapLgConductivity


	
class emg3d.maps.MapLgConductivity

	Bases: emg3d.maps._Map

Maps log_10(σ) to computational variable σ (conductivity).


	forward: x = log_10(σ)


	backward: σ = 10^x




Methods Summary







	backward(mapped)

	Mapping to conductivity.



	derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.



	forward(conductivity)

	Conductivity to mapping.






Methods Documentation


	
backward(mapped)

	Mapping to conductivity.






	
derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.






	
forward(conductivity)

	Conductivity to mapping.













          

      

      

    

  

    
      
          
            
  
MapLnConductivity


	
class emg3d.maps.MapLnConductivity

	Bases: emg3d.maps._Map

Maps log_e(σ) to computational variable σ (conductivity).


	forward: x = log_e(σ)


	backward: σ = exp(x)




Methods Summary







	backward(mapped)

	Mapping to conductivity.



	derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.



	forward(conductivity)

	Conductivity to mapping.






Methods Documentation


	
backward(mapped)

	Mapping to conductivity.






	
derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.






	
forward(conductivity)

	Conductivity to mapping.













          

      

      

    

  

    
      
          
            
  
MapResistivity


	
class emg3d.maps.MapResistivity

	Bases: emg3d.maps._Map

Maps ρ to computational variable σ (conductivity).


	forward: x = ρ = σ^-1


	backward: σ = ρ^-1 = x^-1




Methods Summary







	backward(mapped)

	Mapping to conductivity.



	derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.



	forward(conductivity)

	Conductivity to mapping.






Methods Documentation


	
backward(mapped)

	Mapping to conductivity.






	
derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.






	
forward(conductivity)

	Conductivity to mapping.













          

      

      

    

  

    
      
          
            
  
MapLgResistivity


	
class emg3d.maps.MapLgResistivity

	Bases: emg3d.maps._Map

Maps log_10(ρ) to computational variable σ (conductivity).


	forward: x = log_10(ρ) = log_10(σ^-1)


	backward: σ = ρ^-1 = 10^-x




Methods Summary







	backward(mapped)

	Mapping to conductivity.



	derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.



	forward(conductivity)

	Conductivity to mapping.






Methods Documentation


	
backward(mapped)

	Mapping to conductivity.






	
derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.






	
forward(conductivity)

	Conductivity to mapping.













          

      

      

    

  

    
      
          
            
  
MapLnResistivity


	
class emg3d.maps.MapLnResistivity

	Bases: emg3d.maps._Map

Maps log_e(ρ) to computational variable σ (conductivity).


	forward: x = log_e(ρ) = log_e(σ^-1)


	backward: σ = ρ^-1 = exp(-x)




Methods Summary







	backward(mapped)

	Mapping to conductivity.



	derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.



	forward(conductivity)

	Conductivity to mapping.






Methods Documentation


	
backward(mapped)

	Mapping to conductivity.






	
derivative_chain(gradient, mapped)

	Chain rule to map gradient from conductivity to mapping space.






	
forward(conductivity)

	Conductivity to mapping.













          

      

      

    

  

    
      
          
            
  
get_source_field


	
emg3d.fields.get_source_field(grid, src, freq, strength=0)

	Return the source field.

The source field is given in Equation 2 in [Muld06],


\[s \mu_0 \mathbf{J}_\mathrm{s} ,\]

where \(s = \mathrm{i} \omega\). Either finite length dipoles or
infinitesimal small point dipoles can be defined, whereas the return source
field corresponds to a normalized (1 Am) source distributed within the
cell(s) it resides (can be changed with the strength-parameter).

The adjoint of the trilinear interpolation is used to distribute the
point(s) to the grid edges, which corresponds to the discretization of a
Dirac ([PlDM07]).


	Parameters

	
	gridTensorMesh

	Model grid; a emg3d.meshes.TensorMesh instance.



	srclist of floats

	Source coordinates (m). There are two formats:



	Finite length dipole: [x0, x1, y0, y1, z0, z1].


	Point dipole: [x, y, z, azimuth, dip].









	freqfloat

	Source frequency (Hz), used to compute the Laplace parameter s.
Either positive or negative:


	freq > 0: Frequency domain, hence
\(s = -\mathrm{i}\omega = -2\mathrm{i}\pi f\) (complex);


	freq < 0: Laplace domain, hence
\(s = f\) (real).






	strengthfloat or complex, optional

	Source strength (A):



	If 0, output is normalized to a source of 1 m length, and source
strength of 1 A.


	If != 0, output is returned for given source length and strength.







Default is 0.







	Returns

	
	sfieldSourceField() instance

	Source field, normalized to 1 A m.

















          

      

      

    

  

    
      
          
            
  
get_receiver


	
emg3d.fields.get_receiver(grid, values, coordinates, method='cubic', extrapolate=False)

	Return values corresponding to grid at coordinates.

Works for electric fields as well as magnetic fields obtained with
get_h_field(), and for model parameters.


	Parameters

	
	gridemg3d.meshes.TensorMesh

	The model grid.



	valuesndarray

	Field instance, or a particular field (e.g. field.fx); Model
parameters.



	coordinatestuple (x, y, z)

	Coordinates (x, y, z) where to interpolate values; e.g. receiver
locations.



	methodstr, optional

	The method of interpolation to perform, ‘linear’ or ‘cubic’.
Default is ‘cubic’ (forced to ‘linear’ if there are less than 3 points
in any direction).



	extrapolatebool

	If True, points on new_grid which are outside of grid are
filled by the nearest value (if method='cubic') or by extrapolation
(if method='linear'). If False, points outside are set to zero.

Default is False.







	Returns

	
	new_valuesndarray or utils.EMArray

	Values at coordinates.

If input was a field it returns an EMArray, which is a subclassed
ndarray with .pha and .amp attributes.

If input was an entire Field instance, output is a tuple (fx, fy, fz).










See also


	grid2grid

	Interpolation of model parameters or fields to a new grid.



	get_receiver_response

	Get response for arbitrarily rotated receivers.















          

      

      

    

  

    
      
          
            
  
get_receiver_response


	
emg3d.fields.get_receiver_response(grid, field, rec)

	Return the field (response) at receiver coordinates.


	Parameters

	
	gridemg3d.meshes.TensorMesh

	The model grid.



	fieldField

	The electric or magnetic field.



	rectuple (x, y, z, azimuth, dip)

	Receiver coordinates and angles (m, °).

All values can either be a scalar or having the same length as number
of receivers.

Angles:


	azimuth (°): horizontal deviation from x-axis, anti-clockwise.


	dip (°): vertical deviation from xy-plane up-wards.










	Returns

	
	responsesutils.EMArray

	Responses at receiver.






Note

Currently only implemented for point receivers, not for finite length
dipoles.








See also


	get_receiver

	Get values at coordinates (fields and models).















          

      

      

    

  

    
      
          
            
  
get_h_field


	
emg3d.fields.get_h_field(grid, model, field)

	Return magnetic field corresponding to provided electric field.

Retrieve the magnetic field \(\mathbf{H}\) from the electric field
\(\mathbf{E}\) using Farady’s law, given by


\[\nabla \times \mathbf{E} = \rm{i}\omega\mu\mathbf{H} .\]

Note that the magnetic field in x-direction is defined in the center of the
face defined by the electric field in y- and z-directions, and similar for
the other field directions. This means that the provided electric field and
the returned magnetic field have different dimensions:

E-field:  x: [grid.cell_centers_x,  grid.nodes_y,  grid.nodes_z]
          y: [ grid.nodes_x, grid.cell_centers_y,  grid.nodes_z]
          z: [ grid.nodes_x,  grid.nodes_y, grid.cell_centers_z]

H-field:  x: [ grid.nodes_x, grid.cell_centers_y, grid.cell_centers_z]
          y: [grid.cell_centers_x,  grid.nodes_y, grid.cell_centers_z]
          z: [grid.cell_centers_x, grid.cell_centers_y,  grid.nodes_z]






	Parameters

	
	gridTensorMesh

	Model grid; TensorMesh instance.



	modelModel

	Model; Model instance.



	fieldField

	Electric field; Field instance.







	Returns

	
	hfieldField

	Magnetic field; Field instance.

















          

      

      

    

  

    
      
          
            
  
Field


	
class emg3d.fields.Field

	Bases: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Create a Field instance with x-, y-, and z-views of the field.

A Field is an ndarray with additional views of the x-, y-, and
z-directed fields as attributes, stored as fx, fy, and fz. The
default array contains the whole field, which can be the electric field,
the source field, or the residual field, in a 1D array. A Field instance
has additionally the property ensure_pec which, if called, ensures
Perfect Electric Conductor (PEC) boundary condition. It also has the two
attributes amp and pha for the amplitude and phase, as common in
frequency-domain CSEM.

A Field can be initiated in three ways:


	Field(grid, dtype=np.complex128):
Calling it with a emg3d.meshes.TensorMesh instance returns a
Field instance of correct dimensions initiated with zeroes of data
type dtype.


	Field(grid, field):
Calling it with a emg3d.meshes.TensorMesh instance and an
ndarray returns a Field instance of the provided ndarray, of same
data type.


	Field(fx, fy, fz):
Calling it with three ndarray’s which represent the field in x-, y-,
and z-direction returns a Field instance with these views, of same
data type.




Sort-order is ‘F’.


	Parameters

	
	fx_or_gridemg3d.meshes.TensorMesh or ndarray

	Either a TensorMesh instance or an ndarray of shape grid.nEx or
grid.vnEx. See explanations above. Only mandatory parameter; if the
only one provided, it will initiate a zero-field of dtype.



	fy_or_fieldField or ndarray, optional

	Either a Field instance or an ndarray of shape grid.nEy or grid.vnEy.
See explanations above.



	fzndarray, optional

	An ndarray of shape grid.nEz or grid.vnEz. See explanations above.



	dtypedtype, optional

	Only used if fy_or_field=None and fz=None; the initiated
zero-field for the provided TensorMesh has data type dtype.
Default: complex.



	freqfloat, optional

	Source frequency (Hz), used to compute the Laplace parameter s.
Either positive or negative:


	freq > 0: Frequency domain, hence
\(s = -\mathrm{i}\omega = -2\mathrm{i}\pi f\) (complex);


	freq < 0: Laplace domain, hence
\(s = f\) (real).




Just added as info if provided.
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	ensure_pec

	Set Perfect Electric Conductor (PEC) boundary condition.



	field

	Entire field, 1D [fx, fy, fz].



	freq

	Return frequency.



	fx

	View of the x-directed field in the x-direction (nCx, nNy, nNz).



	fy

	View of the field in the y-direction (nNx, nCy, nNz).



	fz

	View of the field in the z-direction (nNx, nNy, nCz).



	is_electric

	Returns True if Field is electric, False if it is magnetic.



	smu0

	Return s*mu_0; mu_0 = Magn.



	sval

	Return s; s=iw in frequency domain; s=freq in Laplace domain.






Methods Summary







	amp()

	Amplitude of the electromagnetic field.



	copy()

	Return a copy of the Field.



	from_dict(inp)

	Convert dictionary into Field instance.



	pha([deg, unwrap, lag])

	Phase of the electromagnetic field.



	to_dict([copy])

	Store the necessary information of the Field in a dict.
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ensure_pec

	Set Perfect Electric Conductor (PEC) boundary condition.






	
field

	Entire field, 1D [fx, fy, fz].






	
freq

	Return frequency.






	
fx

	View of the x-directed field in the x-direction (nCx, nNy, nNz).






	
fy

	View of the field in the y-direction (nNx, nCy, nNz).






	
fz

	View of the field in the z-direction (nNx, nNy, nCz).






	
is_electric

	Returns True if Field is electric, False if it is magnetic.






	
smu0

	Return s*mu_0; mu_0 = Magn. permeability of free space [H/m].






	
sval

	Return s; s=iw in frequency domain; s=freq in Laplace domain.
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amp()

	Amplitude of the electromagnetic field.






	
copy()

	Return a copy of the Field.






	
classmethod from_dict(inp)

	Convert dictionary into Field instance.


	Parameters

	
	inpdict

	Dictionary as obtained from Field.to_dict().
The dictionary needs the keys field, freq, vnEx, vnEy, and
vnEz.







	Returns

	
	objField instance

	












	
pha(deg=False, unwrap=True, lag=True)

	Phase of the electromagnetic field.


	Parameters

	
	degbool

	If True the returned phase is in degrees, else in radians.
Default is False (radians).



	unwrapbool

	If True the returned phase is unwrapped.
Default is True (unwrapped).



	lagbool

	If True the returned phase is lag, else lead defined.
Default is True (lag defined).














	
to_dict(copy=False)

	Store the necessary information of the Field in a dict.













          

      

      

    

  

    
      
          
            
  
SourceField


	
class emg3d.fields.SourceField

	Bases: emg3d.fields.Field

Create a Source-Field instance with x-, y-, and z-views of the field.

A subclass of Field. Additional properties are the real-valued
source vector (vector, vx, vy, vz), which sum is always one. For a
SourceField frequency is a mandatory  parameter, unlike for a Field
(recommended also for Field though),


	Parameters

	
	fx_or_gridemg3d.meshes.TensorMesh or ndarray

	Either a TensorMesh instance or an ndarray of shape grid.nEx or
grid.vnEx. See explanations above. Only mandatory parameter; if the
only one provided, it will initiate a zero-field of dtype.



	fy_or_fieldField or ndarray, optional

	Either a Field instance or an ndarray of shape grid.nEy or grid.vnEy.
See explanations above.



	fzndarray, optional

	An ndarray of shape grid.nEz or grid.vnEz. See explanations above.



	dtypedtype, optional

	Only used if fy_or_field=None and fz=None; the initiated
zero-field for the provided TensorMesh has data type dtype.
Default: complex.



	freqfloat

	Source frequency (Hz), used to compute the Laplace parameter s.
Either positive or negative:


	freq > 0: Frequency domain, hence
\(s = -\mathrm{i}\omega = -2\mathrm{i}\pi f\) (complex);


	freq < 0: Laplace domain, hence
\(s = f\) (real).




In difference to Field, the frequency has to be provided for
a SourceField.
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	vector

	Entire vector, 1D [vx, vy, vz].



	vx

	View of the x-directed vector in the x-direction (nCx, nNy, nNz).



	vy

	View of the vector in the y-direction (nNx, nCy, nNz).



	vz

	View of the vector in the z-direction (nNx, nNy, nCz).
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vector

	Entire vector, 1D [vx, vy, vz].






	
vx

	View of the x-directed vector in the x-direction (nCx, nNy, nNz).






	
vy

	View of the vector in the y-direction (nNx, nCy, nNz).






	
vz

	View of the vector in the z-direction (nNx, nNy, nCz).













          

      

      

    

  

    
      
          
            
  
Surveys and Simulations


emg3d.surveys Module

A survey stores a set of sources, receivers, and the measured data.


Classes







	Survey(name, sources, receivers, frequencies)

	Create a survey with sources, receivers, and data.



	Dipole(name, coordinates[, electric])

	Finite length dipole or point dipole.



	PointDipole(name, xco, yco, zco, azm, dip, …)

	Infinitesimal small electric or magnetic point dipole.











emg3d.simulations Module

A simulation is the computation (modelling) of electromagnetic responses of a
resistivity (conductivity) model for a given survey.

In its heart, emg3d is a multigrid solver for 3D electromagnetic diffusion
with tri-axial electrical anisotropy. However, it contains most functionalities
to also act as a modeller. The simulation module combines all these things
by combining surveys with computational meshes and fields and providing
high-level, specialised modelling routines.


Functions







	expand_grid_model(grid, model, expand, interface)

	Expand model and grid according to provided parameters.



	estimate_gridding_opts(gridding_opts, grid, …)

	Estimate parameters for automatic gridding.









Classes







	Simulation(name, survey, grid, model[, …])

	Create a simulation for a given survey on a given model.














          

      

      

    

  

    
      
          
            
  
Survey


	
class emg3d.surveys.Survey(name, sources, receivers, frequencies, data=None, fixed=0, **kwargs)

	Bases: object

Create a survey with sources, receivers, and data.

A survey contains all the sources with their frequencies, receivers, and
corresponding data.

Underlying the survey-class is an xarray, which is basically a regular
ndarray with axis labels and more. The module xarray is a soft
dependency, and has to be installed manually to use the Survey
functionality.

This class was developed with a node-based, marine CSEM survey layout in
mind. It is therefore optimised for and mostly tested with that setup. This
means for a number of receivers which measure for all source positions. The
general layout of the data for such a survey is (S, R, F), where S is the
number of sources, R the number of receivers, and F the number of
frequencies:

                      f1
     Rx1 Rx2  .  RxR /   f2
    ┌───┬───┬───┬───┐   /   .
Tx1 │   │   │   │   │──┐   /   fF
    ├───┼───┼───┼───┤  │──┐   /
Tx2 │   │   │   │   │──┤  │──┐
    ├───┼───┼───┼───┤  │──┤  │
 .  │   │   │   │   │──┤  │──┤
    ├───┼───┼───┼───┤  │──┤  │
TxS │   │   │   │   │──┤  │──┤
    └───┴───┴───┴───┘  │──┤  │
       └───┴───┴───┴───┘  │──┤
          └───┴───┴───┴───┘  │
             └───┴───┴───┴───┘





However, the class can also be used for a CSEM streamer-style survey
layout (by setting fixed=True), where there is a moving source with one
or several receivers at a fixed offset. The layout of the data is then also
(S, R, F), but here S is the number of locations of the only source, R
is the number of receiver-offsets, and F is the number of frequencies:

                                 f1
         Offs1     .   OffsR    /   .
       ┌─────────┬───┬─────────┐   /   fF
TxPos1 │ Rx1-TP1 │ . │ RxR-TP1 │──┐   /
       ├─────────┼───┼─────────┤  │──┐
TxPos2 │ Rx1-TP2 │ . │ RxR-TP2 │──┤  │
       ├─────────┼───┼─────────┤  │──┤
 .     │ .       │ . │ .       │──┤  │
       ├─────────┼───┼─────────┤  │──┤
TxPosS │ Rx1-TPS │ . │ RxR-TPS │──┤  │
       └─────────┴───┴─────────┘  │──┤
          └─────────┴───┴─────────┘  │
             └─────────┴───┴─────────┘





This means that even though there is only one source, there are actually
S source dipoles, as each position is treated as a different dipole. The
number of receiver dipoles in this case is SxR. This setup can also be
used for airborne EM.


	Parameters

	
	namestr

	Name of the survey



	sources, receiverstuple, list, or dict

	Sources and receivers.


	Tuples: Coordinates in one of the two following formats:


	(x, y, z, azimuth, dip) [m, m, m, °, °];


	(x0, x1, y0, y1, z0, z1) [m, m, m, m, m, m].




Dimensions will be expanded (hence, if n dipoles, each parameter
must have length 1 or n). These dipoles will be named sequential
with Tx### and Rx###.

The tuple can additionally contain an additional element at the end
(after dip or z1), electric, a boolean of length 1 or n, that
indicates if the dipoles are electric or magnetic.



	List: A list of Dipole-instances. The names of all dipoles
in the list must be unique.


	Dictionary: A dict of de-serialized Dipole-instances; mainly
used for loading from file.






	frequenciesndarray

	Source frequencies (Hz).



	datandarray or None

	The observed data (dtype=np.complex128); must have shape (nsrc, nrec,
nfreq) or, if fixed=True, (nsrc, noff, nfreq). If None, it will be
initiated with NaN’s.



	fixedbool

	Node-based CSEM survey (fixed=False; default) or streamer-type CSEM
survey (fixed=True). In the streamer-type survey, the number of
receivers supplied must be a multiple of the source positions.
In this case, the receivers are grouped into offsets.



	noise_floor, relative_errorfloat

	Noise floor and relative error of the data. Default to None.
See Survey.standard_deviation for more info.



	stdndarray or None

	Standard deviation of the data, same shape as data. Default to None.
See Survey.standard_deviation for more info.
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	data

	Data, a xarray.DataSet instance.



	frequencies

	Frequency array.



	noise_floor

	Returns the noise floor of the data.



	observed

	Returns the observed data.



	rec_coords

	Return receiver coordinates.



	receivers

	Receiver dict containing all receiver dipoles.



	relative_error

	Returns the relative error of the data.



	shape

	Return nsrc x nrec x nfreq.



	size

	Return actual data size (does NOT equal nsrc x nrec x nfreq).



	sources

	Source dict containing all source dipoles.



	src_coords

	Return source coordinates.



	standard_deviation

	Returns the standard deviation of the data.






Methods Summary







	copy()

	Return a copy of the Survey.



	from_dict(inp)

	Convert dictionary into Survey instance.



	from_file(fname[, name])

	Load Survey from a file.



	to_dict([copy])

	Store the necessary information of the Survey in a dict.



	to_file(fname[, name])

	Store Survey to a file.
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data

	Data, a xarray.DataSet instance.

Contains the xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] element .observed, but other
data can be added. E.g., emg3d.simulations.Simulation adds the
synthetic array.






	
frequencies

	Frequency array.






	
noise_floor

	Returns the noise floor of the data.

See emg3d.surveys.Survey.standard_deviation for more info.






	
observed

	Returns the observed data.






	
rec_coords

	Return receiver coordinates.

The returned format is (x, y, z, azm, dip), a tuple of 5 tuples. If
fixed=True it returns a dict with the offsets as keys, and for each
offset it returns the corresponding receiver coordinates as just
outlined.






	
receivers

	Receiver dict containing all receiver dipoles.






	
relative_error

	Returns the relative error of the data.

See emg3d.surveys.Survey.standard_deviation for more info.






	
shape

	Return nsrc x nrec x nfreq.

Note that not all source-receiver-frequency pairs do actually have
data. Check size to see how many data points there are.






	
size

	Return actual data size (does NOT equal nsrc x nrec x nfreq).






	
sources

	Source dict containing all source dipoles.






	
src_coords

	Return source coordinates.

The returned format is (x, y, z, azm, dip), a tuple of 5 tuples.






	
standard_deviation

	Returns the standard deviation of the data.

The standard deviation can be set by providing an array of the same
dimension as the data itself:

survey.standard_deviation = ndarray  # (nsrc, nrec, nfreq)





Alternatively, one can set the noise_floor \(\epsilon_\text{nf}\)
and the relative_error \(\epsilon_\text{r}\):

survey.noise_floor = float or ndarray      # (> 0 or None)
survey.relative error = float or ndarray   # (> 0 or None)





They must be either floats, or three-dimensional arrays of shape
([nsrc or 1], [nrec or 1], [nfreq or 1]); dimensions of one will be
broadcasted to the corresponding size. E.g., for a dataset of arbitrary
amount of sources and receivers with three frequencies you can define
a purely frequency-dependent relative error via
relative_error=np.array([err_f1, err_f2, err_f3])[None, None, :].

The standard deviation \(\varsigma_i\) of observation \(d_i\)
is then given in terms of the noise floor
\(\epsilon_{\text{nf};i}\) and the relative error
\(\epsilon_{\text{re};i}\) by


(35)\[\varsigma_i = \sqrt{
    \epsilon_{\text{nf}; i}^2 +
    \left(\epsilon_{\text{re}; i}|d_i|\right)^2 } \, .\]

Note that a set standard deviation is prioritized over potentially also
defined noise floor and relative error. To use the noise floor and the
relative error after defining standard deviation directly you would
have to reset it like

survey.standard_deviation = None





after which Equation (35) would be used again.
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copy()

	Return a copy of the Survey.






	
classmethod from_dict(inp)

	Convert dictionary into Survey instance.


	Parameters

	
	inpdict

	Dictionary as obtained from Survey.to_dict().
The dictionary needs the keys name, sources, receivers
frequencies, data, and fixed.







	Returns

	
	objSurvey instance

	












	
classmethod from_file(fname, name='survey', **kwargs)

	Load Survey from a file.


	Parameters

	
	fnamestr

	File name including extension. Used backend depends on the file
extensions:


	‘.npz’: numpy-binary


	‘.h5’: h5py-binary (needs h5py)


	‘.json’: json






	namestr

	Name under which the survey is stored within the file.



	kwargsKeyword arguments, optional

	Passed through to io.load().







	Returns

	
	surveySurvey

	The survey that was stored in the file.














	
to_dict(copy=False)

	Store the necessary information of the Survey in a dict.






	
to_file(fname, name='survey', **kwargs)

	Store Survey to a file.


	Parameters

	
	fnamestr

	File name inclusive ending, which defines the used data format.
Implemented are currently:


	.h5 (default): Uses h5py to store inputs to a hierarchical,
compressed binary hdf5 file. Recommended file format, but
requires the module h5py. Default format if ending is not
provided or not recognized.


	.npz: Uses numpy to store inputs to a flat, compressed binary
file. Default format if h5py is not installed.


	.json: Uses json to store inputs to a hierarchical, plain
text file.






	namestr

	Name under which the survey is stored within the file.



	kwargsKeyword arguments, optional

	Passed through to io.save().





















          

      

      

    

  

    
      
          
            
  
Dipole


	
class emg3d.surveys.Dipole(name, coordinates, electric=True, **kwargs)

	Bases: emg3d.surveys.PointDipole

Finite length dipole or point dipole.

Expansion of the basic PointDipole to allow for finite length
dipoles, and to provide coordinate inputs in the form of
(x, y, z, azimuth, dip) or (x0, x1, y0, y1, z0, z1).

Adds attributes is_finite, electrode1, electrode2, length, and
coordinates to the class.

For point dipoles, this gives it a length of unity (1 m), takes its
coordinates as center, and computes the two electrode positions.

For finite length dipoles it sets the coordinates to its center and
computes its length, azimuth, and dip.

Finite length dipoles and point dipoles have therefore the exactly same
signature, and can only be distinguished by the attribute is_finite.


	Parameters

	
	namestr

	Dipole name.



	coordinatestuple of floats

	Source coordinates, one of the following:


	(x0, x1, y0, y1, z0, z1): finite length dipole,


	(x, y, z, azimuth, dip): point dipole.




The coordinates x, y, and z are in meters (m), the azimuth and dip in
degree (°).

Angles (coordinate system is right-handed with positive z up;
East-North-Depth):


	azimuth (°): horizontal deviation from x-axis, anti-clockwise.


	+/-dip (°): vertical deviation from xy-plane down/up-wards.






	electricbool

	Electric dipole if True, magnetic dipole otherwise. Default is True.









Attributes Summary







	azm

	



	dip

	



	electric

	



	name

	



	xco

	



	yco

	



	zco
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azm

	




	
dip

	




	
electric

	




	
name

	




	
xco

	




	
yco

	




	
zco

	











          

      

      

    

  

    
      
          
            
  
PointDipole


	
class emg3d.surveys.PointDipole(name: str, xco: float, yco: float, zco: float, azm: float, dip: float, electric: bool)

	Bases: object

Infinitesimal small electric or magnetic point dipole.

Defined by its coordinates (xco, yco, zco), its azimuth (azm), its dip, and
its type (electric).

Not meant to be used directly. Use Dipole instead.


	Parameters

	
	namestr

	Dipole name.



	xco, yco, zcofloat

	x-, y-, and z-coordinates (m).



	azm, dipfloat

	Angles (in degrees °); coordinate system is right-handed with positive
z up; East-North-Depth:


	azimuth (°): horizontal deviation from x-axis, anti-clockwise.


	+/-dip (°): vertical deviation from xy-plane down/up-wards.






	electricbool

	Electric dipole if True, magnetic dipole otherwise. Default is True.
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	azm

	



	dip

	



	electric

	



	name

	



	xco

	



	yco

	



	zco
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azm

	




	
dip

	




	
electric

	




	
name

	




	
xco

	




	
yco

	




	
zco

	











          

      

      

    

  

    
      
          
            
  
expand_grid_model


	
emg3d.simulations.expand_grid_model(grid, model, expand, interface)

	Expand model and grid according to provided parameters.

Expand the grid and corresponding model in positive z-direction from the
end of the grid to the interface with expand[0], and a 100 m thick
layer above the interface with expand[1].

The provided properties are taken as isotropic; mu_r and epsilon_r
are expanded with ones, if necessary.

The interface is usually the sea-surface, and expand is therefore
[property_sea, property_air].


	Parameters

	
	gridemg3d.meshes.TensorMesh

	The grid.



	modelemg3d.models.Model

	The model.



	expandlist

	The two properties below and above the interface:
[below_interface, above_interface].



	interfacefloat

	Interface between the two properties in expand.







	Returns

	
	gridemg3d.meshes.TensorMesh

	Expanded grid.



	modelemg3d.models.Model

	Expanded model.

















          

      

      

    

  

    
      
          
            
  
estimate_gridding_opts


	
emg3d.simulations.estimate_gridding_opts(gridding_opts, grid, model, survey, input_nCz=None)

	Estimate parameters for automatic gridding.

Automatically determines the required gridding options from the provided
grid, model, and survey, if they are not provided in gridding_opts.

The dict gridding_opts can contain any input parameter taken by
emg3d.meshes.construct_mesh(), see the corresponding documentation
for more details with regards to the possibilities.

Different keys of gridding_opts are treated differently:


	The following parameters are estimated from the model if not
provided:


	properties: volume averages (of x, y, and z-directed properties) on
log10 scale of the outermost layer in a given direction.


	mapping: taken from model.






	The following parameters are estimated from the survey if not
provided:


	frequency: average (on log10-scale) of all frequencies.


	center: center of all sources.


	domain: from vector, if provided, or


	in x/y-directions: extent of sources and receivers plus 10% on each
side, ensuring ratio of 3.


	in z-direction: extent of sources and receivers, ensuring ratio of 2
to horizontal dimension; 1/10 tenth up, 9/10 down.




The ratio means that it is enforced that the survey dimension in x or
y-direction is not smaller than a third of the survey dimension in the
other direction. If not, the smaller dimension is expanded
symmetrically. Similarly in the vertical direction, which must be at
least half the dimension of the maximum horizontal dimension or 5 km,
whatever is smaller. Otherwise it is expanded in a ratio of 9 parts
downwards, one part upwards.







	The following parameter is taken from the grid if provided as a
string:


	vector: This is the only real “difference” to the inputs of
emg3d.meshes.construct_mesh(). The normal input is accepted, but
it can also be a string contain any combination of ‘x’, ‘y’, and ‘z’.
All directions contained in this string are then taken from the
provided grid. E.g., if gridding_opts['vector']='xz' it will take
the x- and z-directed vectors from the grid.






	The following parameters are simply passed along if they are provided,
nothing is done otherwise:


	vector


	distance


	stretching


	seasurface


	cell_numbers


	lambda_factor


	lambda_from_center


	max_buffer


	min_width_limits


	min_width_pps


	verb









	Parameters

	
	gridding_optsdict

	Containing input parameters to provide to
emg3d.meshes.construct_mesh(). See the corresponding
documentation and the explanations above.



	gridemg3d.meshes.TensorMesh

	The grid.



	modelemg3d.models.Model

	The model.



	surveyemg3d.surveys.Survey

	The survey.



	input_nCzint, optional

	If expand_grid_model() was used, input_nCz corresponds to the
original grid.vnC[2].







	Returns

	
	gridding_optsdict

	Dict to provide to emg3d.meshes.construct_mesh().

















          

      

      

    

  

    
      
          
            
  
Simulation


	
class emg3d.simulations.Simulation(name, survey, grid, model, max_workers=4, gridding='single', **kwargs)

	Bases: object

Create a simulation for a given survey on a given model.

A simulation can be used to compute responses for an entire survey, hence
for an arbitrary amount of sources, receivers, and frequencies. The
responses can be computed in parallel over sources and frequencies. It can
also be used to compute the misfit with the data and to compute the
gradient of the misfit function.

The computational grid(s) can either be provided, or automatic gridding can
be used; see the description of the parameters gridding and
gridding_opts for more details.


Warning

The automatic gridding does its best to generate meshes that are
suitable for the provided model and survey. However, CSEM spans a wide
range of acquisition layouts, and frequencies as well as conductivities
or resistivities span many orders of magnitude. This makes it hard to
have a function that fits all purposes. Check the meshes with your
expert knowledge. Also, the automatic gridding is conservative in its
estimate, in order to be on the save side (correct results over speed).
This means, however, that often smaller grids could be used by
providing the appropriate options in gridding_opts.




Note

The Simulation-class has currently a few limitations:


	survey.fixed: must be False;


	sources and receivers must be electric;







	Parameters

	
	surveyemg3d.surveys.Survey

	The survey layout, containing sources, receivers, frequencies, and
optionally the measured data.

The survey-data will be modified in place. Provide survey.copy() if you
want to avoid this.



	gridemg3d.meshes.TensorMesh

	The grid. See emg3d.meshes.TensorMesh.



	modelemg3d.models.Model

	The model. See emg3d.models.Model.



	griddingstr, optional

	Method how the computational grids are computed. Default is ‘single’.
The different methods are:


	‘same’: Same grid as for the input model.


	‘single’: A single grid for all sources and frequencies.


	‘frequency’: Frequency-dependent grids.


	‘source’: Source-dependent grids.


	‘both’: Frequency- and source-dependent grids.


	‘input’: Same as ‘single’, but instead of automatically generate
the mesh it has to be provided in gridding_opts.


	‘dict’: Same as ‘both’, but instead of automatically generate the
meshes they have to be provided as a dict[source][frequency]
in gridding_opts.




See the parameter gridding_opts for more details.



	gridding_optsdict or TensorMesh, optional

	Input format depends on gridding:


	‘same’: Nothing, gridding_opts is not permitted.


	‘single’, ‘frequency’, ‘source’, ‘both’: Described below.


	‘input’: A emg3d.meshes.TensorMesh.


	‘dict’: Dictionary of the format dict[source][frequency]
containing a emg3d.meshes.TensorMesh for each
source-frequency pair.




The dict in the case of ‘single’, ‘frequency’, ‘source’, ‘both’ is
passed to emg3d.meshes.construct_mesh(); consult the
corresponding documentation for more information. Parameters that are
not provided are estimated from the model, grid, and survey using
estimate_gridding_opts(), which documentation contains more
information too.

There are two notably differences to the parameters described in
emg3d.meshes.construct_mesh():


	vector: besides the normal possibility it can also be a string
containing one or several of ‘x’, ‘y’, and ‘z’. In these cases the
corresponding dimension of the input mesh is provided as vector.
See estimate_gridding_opts().


	expand: in the format of [property_sea, property_air]; if
provided, the input model is expanded up to the seasurface with sea
water, and an air layer is added. The actual height of the seasurface
can be defined with the key seasurface. See
expand_grid_model().






	solver_optsdict, optional

	Passed through to emg3d.solver.solve(). The dict can contain any
parameter that is accepted by the emg3d.solver.solve() except for
grid, model, sfield, and efield.
If not provided the following defaults are used:


	sslsolver=True;


	semicoarsening=True;


	linerelaxation=True;


	verb=0 (yet warnings are capture and shown).




Note that these defaults are different from the defaults in
emg3d.solver.solve(). The defaults chosen here will be slower in
many cases, but they are the most robust combination at which you can
throw most things.



	max_workersint

	The maximum number of processes that can be used to execute the
given calls. Default is 4.



	verbint; optional

	Level of verbosity. Default is 1.


	-1: Error.


	0: Warning.


	1: Info.


	2: Debug.












Attributes Summary







	data

	Shortcut to survey.data.



	gradient

	Return the gradient of the misfit function.



	misfit

	Return the misfit function.






Methods Summary







	clean([what])

	Clean part of the data base.



	compute([observed])

	Compute efields asynchronously for all sources and frequencies.



	copy([what])

	Return a copy of the Simulation.



	from_dict(inp)

	Convert dictionary into Simulation instance.



	from_file(fname[, name])

	Load Simulation from a file.



	get_efield(source, frequency, **kwargs)

	Return electric field for given source and frequency.



	get_efield_info(source, frequency)

	Return the solver information of the corresponding computation.



	get_grid(source, frequency)

	Return computational grid of the given source and frequency.



	get_hfield(source, frequency, **kwargs)

	Return magnetic field for given source and frequency.



	get_model(source, frequency)

	Return model on the grid of the given source and frequency.



	get_sfield(source, frequency)

	Return source field for given source and frequency.



	to_dict([what, copy])

	Store the necessary information of the Simulation in a dict.



	to_file(fname[, what, name])

	Store Simulation to a file.






Attributes Documentation


	
data

	Shortcut to survey.data.






	
gradient

	Return the gradient of the misfit function.

See emg3d.optimize.gradient().






	
misfit

	Return the misfit function.

See emg3d.optimize.misfit().





Methods Documentation


	
clean(what='computed')

	Clean part of the data base.


	Parameters

	
	whatstr

	What to clean. Currently implemented:


	‘computed’ (default):
Removes all computed properties: electric and magnetic fields and
responses at receiver locations.


	‘keepresults’:
Removes everything  except for the responses at receiver
locations.


	‘all’:
Removes everything (leaves it plain as initiated).

















	
compute(observed=False, **kwargs)

	Compute efields asynchronously for all sources and frequencies.


	Parameters

	
	observedbool

	If True, it stores the current result also as observed model.
This is usually done for pure forward modelling (not inversion).
It will as such be stored within the survey. If the survey has
either relative_error or noise_floor, random Gaussian noise
with std will be added to the data.observed (not to
data.synthetic). Also, data below the noise floor will be set to
NaN.



	min_offsetfloat

	Default is 0.0. Data in data.observed where the offset <
min_offset are set to NaN.














	
copy(what='computed')

	Return a copy of the Simulation.

See to_file for more information regarding what.






	
classmethod from_dict(inp)

	Convert dictionary into Simulation instance.


	Parameters

	
	inpdict

	Dictionary as obtained from Simulation.to_dict().







	Returns

	
	objSimulation instance

	












	
classmethod from_file(fname, name='simulation', **kwargs)

	Load Simulation from a file.


	Parameters

	
	fnamestr

	File name including extension. Used backend depends on the file
extensions:


	‘.npz’: numpy-binary


	‘.h5’: h5py-binary (needs h5py)


	‘.json’: json






	namestr

	Name under which the simulation is stored within the file.



	kwargsKeyword arguments, optional

	Passed through to emg3d.io.load().







	Returns

	
	simulationSimulation

	The simulation that was stored in the file.














	
get_efield(source, frequency, **kwargs)

	Return electric field for given source and frequency.






	
get_efield_info(source, frequency)

	Return the solver information of the corresponding computation.






	
get_grid(source, frequency)

	Return computational grid of the given source and frequency.






	
get_hfield(source, frequency, **kwargs)

	Return magnetic field for given source and frequency.






	
get_model(source, frequency)

	Return model on the grid of the given source and frequency.






	
get_sfield(source, frequency)

	Return source field for given source and frequency.






	
to_dict(what='computed', copy=False)

	Store the necessary information of the Simulation in a dict.

See to_file for more information regarding what.






	
to_file(fname, what='computed', name='simulation', **kwargs)

	Store Simulation to a file.


	Parameters

	
	fnamestr

	File name inclusive ending, which defines the used data format.
Implemented are currently:


	.h5 (default): Uses h5py to store inputs to a hierarchical,
compressed binary hdf5 file. Recommended file format, but
requires the module h5py. Default format if ending is not
provided or not recognized.


	.npz: Uses numpy to store inputs to a flat, compressed binary
file. Default format if h5py is not installed.


	.json: Uses json to store inputs to a hierarchical, plain
text file.






	whatstr

	What to store. Currently implemented:


	‘computed’ (default):
Stores all computed properties: electric fields and responses at
receiver locations.


	‘results’:
Stores only the response at receiver locations.


	‘all’:
Stores everything.


	‘plain’:
Only stores the plain Simulation (as initiated).






	namestr

	Name under which the survey is stored within the file.



	kwargsKeyword arguments, optional

	Passed through to emg3d.io.save().





















          

      

      

    

  

    
      
          
            
  
Optimize


emg3d.optimize Module


Inversion

Functionalities related to optimization (inversion), e.g., misfit function,
gradient of the misfit function, or data- and depth-weighting.

Currently it follows the implementation of [PlMu08], using the adjoint-state
technique for the gradient.




Functions







	gradient(simulation)

	Compute the discrete gradient using the adjoint-state method.



	misfit(simulation)

	Return the misfit function.














          

      

      

    

  

    
      
          
            
  
gradient


	
emg3d.optimize.gradient(simulation)

	Compute the discrete gradient using the adjoint-state method.

The discrete gradient for a single source at a single frequency is given by
Equation (10) in [PlMu08],


\[\nabla_p \phi(\textbf{p}) =
-\sum_{k,l,m}\mathbf{\bar{\lambda}}^E_x
       \frac{\partial S}{\partial \textbf{p}} \textbf{E}_x
-\sum_{k,l,m}\mathbf{\bar{\lambda}}^E_y
       \frac{\partial S}{\partial \textbf{p}} \textbf{E}_y
-\sum_{k,l,m}\mathbf{\bar{\lambda}}^E_z
       \frac{\partial S}{\partial \textbf{p}} \textbf{E}_z \ ,\]

where the grid notation (\(\{k, l, m\}\) and its \(\{+1/2\}\)
equivalents) have been omitted for brevity (except for the sum symbols).


Note

The gradient is currently implemented only for electric sources and
receivers; only for isotropic models; and not for electric permittivity
nor magnetic permeability.




	Parameters

	
	simulationemg3d.simulations.Simulation

	The simulation.







	Returns

	
	gradndarray

	Adjoint-state gradient (same shape as simulation.model).

















          

      

      

    

  

    
      
          
            
  
misfit


	
emg3d.optimize.misfit(simulation)

	Return the misfit function.

The data misfit or weighted least-squares functional using an \(l_2\)
norm is given by


(36)\[    \phi = \frac{1}{2} \sum_f\sum_s\sum_r
        \left\{
        \left\lVert
            W_{s,r,f} \left(
               \textbf{d}_{s,r,f}^\text{pred}
               -\textbf{d}_{s,r,f}^\text{obs}
            \right) \right\rVert^2
        \right\}
    + R \ .\]

Here, \(f, s, r\) stand for frequency, source, and receiver,
respectively; \(\textbf{d}^\text{obs}\) are the observed electric and
magnetic data, and \(\textbf{d}^\text{pred}\) are the synthetic
electric and magnetic data. Finally, \(R\) is a regularization term.

The data weight of observation \(d_i\) is given by \(W_i =
\varsigma^{-1}_i\), where \(\varsigma_i\) is the standard deviation of
the observation (see emg3d.surveys.Survey.standard_deviation).


Note

This is an early implementation of the misfit function. Currently not
yet implemented are:


	Magnetic data;


	Regularization term.







	Parameters

	
	simulationemg3d.simulations.Simulation

	The simulation.







	Returns

	
	misfitfloat

	Value of the misfit function.

















          

      

      

    

  

    
      
          
            
  
I/O and Utils


emg3d.io Module

Utility functions for writing and reading data.


Functions







	save(fname, **kwargs)

	Save surveys, meshes, models, fields, and more to disk.



	load(fname, **kwargs)

	Load meshes, models, fields, and other data from disk.











emg3d.utils Module

Utility functions for the multigrid solver.


Classes







	Fourier(time, fmin, fmax[, signal, ft, ftarg])

	Time-domain CSEM computation.



	Time()

	Class for timing (now; runtime).



	Report([add_pckg, ncol, text_width, sort])

	Print date, time, and version information.



	EMArray

	Create an EM-ndarray: add amplitude <amp> and phase <pha> methods.














          

      

      

    

  

    
      
          
            
  
save


	
emg3d.io.save(fname, **kwargs)

	Save surveys, meshes, models, fields, and more to disk.

Serialize and save data to disk in different formats (see parameter
description of fname for the supported file formats).

Any other (non-emg3d) object can be added too, as long as it knows how to
serialize itself.

The serialized instances will be de-serialized if loaded with load().


	Parameters

	
	fnamestr

	File name inclusive ending, which defines the used data format.
Implemented are currently:


	.h5: Uses h5py to store inputs to a hierarchical, compressed
binary hdf5 file. Recommended file format, but requires the module
h5py.


	.npz: Uses numpy to store inputs to a flat, compressed binary
file.


	.json: Uses json to store inputs to a hierarchical, plain text
file.






	compressionint or str, optional

	Passed through to h5py, default is ‘gzip’.



	json_indentint or None

	Passed through to json, default is 2.



	verbint

	If 1 (default) verbose, if 0 silent.



	kwargsKeyword arguments, optional

	Data to save using its key as name. The following instances will be
properly serialized: emg3d.meshes.TensorMesh,
emg3d.fields.Field, and emg3d.models.Model and
serialized again if loaded with load(). These instances are
collected in their own group if h5py is used.

Note that the provided data cannot contain the before described
parameters as keys.

















          

      

      

    

  

    
      
          
            
  
load


	
emg3d.io.load(fname, **kwargs)

	Load meshes, models, fields, and other data from disk.

Load and de-serialize emg3d.meshes.TensorMesh,
emg3d.fields.Field, and emg3d.models.Model instances and
add arbitrary other data that were saved with save().


	Parameters

	
	fnamestr

	File name including extension. Possibilities:


	‘.npz’: numpy-binary


	‘.h5’: h5py-binary (needs h5py)


	‘.json’: json






	verbint

	If 1 (default) verbose, if 0 silent.







	Returns

	
	outdict

	A dictionary containing the data stored in fname;
emg3d.meshes.TensorMesh, emg3d.fields.Field, and
emg3d.models.Model instances are de-serialized and returned as
instances.

















          

      

      

    

  

    
      
          
            
  
Fourier


	
class emg3d.utils.Fourier(time, fmin, fmax, signal=0, ft='dlf', ftarg=None, **kwargs)

	Bases: object

Time-domain CSEM computation.

Class to carry out time-domain modelling with the frequency-domain code
emg3d. Instances of the class take care of computing the required
frequencies, the interpolation from coarse, limited-band frequencies to the
required frequencies, and carrying out the actual transform.

Everything related to the Fourier transform is done by utilising the
capabilities of the 1D modeller empymod [https://empymod.readthedocs.io/en/stable/modeller.html#module-empymod]. The input parameters
time, signal, ft, and ftarg are passed to the function
empymod.utils.check_time() [https://empymod.readthedocs.io/en/stable/code.html#empymod.utils.check_time] to obtain the required frequencies. The
actual transform is subsequently carried out by calling
empymod.model.tem() [https://empymod.readthedocs.io/en/stable/modeller.html#empymod.model.tem]. See these functions for more details about the
exact implementations of the Fourier transforms and its parameters.
Note that also the verb-argument follows the definition in empymod.

The mapping from computed frequencies to the frequencies required for the
Fourier transform is done in three steps:


	Data for \(f>f_\mathrm{max}\) is set to 0+0j.


	Data for \(f<f_\mathrm{min}\) is interpolated by adding an additional
data point at a frequency of 1e-100 Hz. The data for this point is
data.real[0]+0j, hence the real part of the lowest computed
frequency and zero imaginary part. Interpolation is carried out using
PCHIP scipy.interpolate.pchip_interpolate() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html#scipy.interpolate.pchip_interpolate].


	Data for \(f_\mathrm{min}\le f \le f_\mathrm{max}\) is computed
with cubic spline interpolation (on a log-scale)
scipy.interpolate.InterpolatedUnivariateSpline [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html#scipy.interpolate.InterpolatedUnivariateSpline].




Note that fmin and fmax should be chosen wide enough such that the
mapping for \(f>f_\mathrm{max}\) \(f<f_\mathrm{min}\) does not
matter that much.


	Parameters

	
	timendarray

	Desired times (s).



	fmin, fmaxfloat

	Minimum and maximum frequencies (Hz) to compute:



	Data for freq > fmax is set to 0+0j.


	Data for freq < fmin is interpolated, using an extra data-point at
f = 1e-100 Hz, with value data.real[0]+0j. (Hence zero imaginary
part, and the lowest computed real value.)









	signal{0, 1, -1}, optional

	
	Source signal, default is 0:

	
	None: Frequency-domain response


	-1 : Switch-off time-domain response


	0 : Impulse time-domain response


	+1 : Switch-on time-domain response










	ft{‘sin’, ‘cos’, ‘fftlog’}, optional

	Flag to choose either the Digital Linear Filter method (Sine- or
Cosine-Filter) or the FFTLog for the Fourier transform.
Defaults to ‘sin’.



	ftargdict, optional

	Depends on the value for ft:



	If ft=’dlf’:



	dlf: string of filter name in empymod.filters [https://empymod.readthedocs.io/en/stable/code.html#module-empymod.filters] or the
filter method itself. (Default:
empymod.filters.key_201_CosSin_2012() [https://empymod.readthedocs.io/en/stable/code.html#empymod.filters.key_201_CosSin_2012])


	pts_per_dec: points per decade; (default: -1)



	If 0: Standard DLF.


	If < 0: Lagged Convolution DLF.


	If > 0: Splined DLF
















	If ft=’fftlog’:



	pts_per_dec: sampels per decade (default: 10)


	add_dec: additional decades [left, right]
(default: [-2, 1])


	q: exponent of power law bias (default: 0); -1 <= q <= 1
















	freq_inparray

	Frequencies to use for computation. Mutually exclusive with
every_x_freq.



	every_x_freqint

	Every every_x_freq-th frequency of the required frequency-range is
used for computation. Mutually exclusive with freq_calc.









Attributes Summary







	every_x_freq

	If set, freq_coarse is every_x_freq-frequency of freq_req.



	fmax

	Maximum frequency (Hz) to compute.



	fmin

	Minimum frequency (Hz) to compute.



	freq_calc

	Frequencies at which the model has to be computed.



	freq_calc_i

	Indices of freq_coarse which have to be computed.



	freq_coarse

	Coarse frequency range, can be different from freq_req.



	freq_extrapolate

	These are the frequencies to extrapolate.



	freq_extrapolate_i

	Indices of the frequencies to extrapolate.



	freq_inp

	If set, freq_coarse is set to freq_inp.



	freq_interpolate

	These are the frequencies to interpolate.



	freq_interpolate_i

	Indices of the frequencies to interpolate.



	freq_req

	Frequencies required to carry out the Fourier transform.



	ft

	Type of Fourier transform.



	ftarg

	Fourier transform arguments.



	signal

	Signal in time domain {0, 1, -1}.



	time

	Desired times (s).






Methods Summary







	fourier_arguments(ft, ftarg)

	Set Fourier type and its arguments.



	freq2time(fdata, off)

	Compute corresponding time-domain signal.



	interpolate(fdata)

	Interpolate from computed data to required data.






Attributes Documentation


	
every_x_freq

	If set, freq_coarse is every_x_freq-frequency of freq_req.






	
fmax

	Maximum frequency (Hz) to compute.






	
fmin

	Minimum frequency (Hz) to compute.






	
freq_calc

	Frequencies at which the model has to be computed.






	
freq_calc_i

	Indices of freq_coarse which have to be computed.






	
freq_coarse

	Coarse frequency range, can be different from freq_req.






	
freq_extrapolate

	These are the frequencies to extrapolate.

In fact, it is dow via interpolation, using an extra data-point at f =
1e-100 Hz, with value data.real[0]+0j. (Hence zero imaginary part, and
the lowest computed real value.)






	
freq_extrapolate_i

	Indices of the frequencies to extrapolate.






	
freq_inp

	If set, freq_coarse is set to freq_inp.






	
freq_interpolate

	These are the frequencies to interpolate.

If freq_req is equal freq_coarse, then this is eual to freq_calc.






	
freq_interpolate_i

	Indices of the frequencies to interpolate.

If freq_req is equal freq_coarse, then this is eual to freq_calc_i.






	
freq_req

	Frequencies required to carry out the Fourier transform.






	
ft

	Type of Fourier transform.
Set via fourier_arguments(ft, ftarg).






	
ftarg

	Fourier transform arguments.
Set via fourier_arguments(ft, ftarg).






	
signal

	Signal in time domain {0, 1, -1}.






	
time

	Desired times (s).





Methods Documentation


	
fourier_arguments(ft, ftarg)

	Set Fourier type and its arguments.






	
freq2time(fdata, off)

	Compute corresponding time-domain signal.

Carry out the actual Fourier transform.


	Parameters

	
	fdatandarray

	Frequency-domain data corresponding to freq_calc.



	offfloat

	Corresponding offset (m).







	Returns

	
	tdatandarray

	Time-domain data corresponding to Fourier.time.














	
interpolate(fdata)

	Interpolate from computed data to required data.


	Parameters

	
	fdatandarray

	Frequency-domain data corresponding to freq_calc.







	Returns

	
	full_datandarray

	Frequency-domain data corresponding to freq_req.





















          

      

      

    

  

    
      
          
            
  
Time


	
class emg3d.utils.Time

	Bases: object

Class for timing (now; runtime).

Attributes Summary







	elapsed

	Return runtime in seconds since time zero.



	now

	Return string of current time.



	runtime

	Return string of runtime since time zero.



	t0

	Return time zero of this class instance.






Attributes Documentation


	
elapsed

	Return runtime in seconds since time zero.






	
now

	Return string of current time.






	
runtime

	Return string of runtime since time zero.






	
t0

	Return time zero of this class instance.













          

      

      

    

  

    
      
          
            
  
Report


	
class emg3d.utils.Report(add_pckg=None, ncol=3, text_width=80, sort=False)

	Bases: scooby.report.Report

Print date, time, and version information.

Use scooby to print date, time, and package version information in any
environment (Jupyter notebook, IPython console, Python console, QT
console), either as html-table (notebook) or as plain text (anywhere).

Always shown are the OS, number of CPU(s), numpy, scipy, emg3d,
numba, sys.version, and time/date.

Additionally shown are, if they can be imported, IPython and
matplotlib. It also shows MKL information, if available.

All modules provided in add_pckg are also shown.


Note

The package scooby has to be installed in order to use Report:
pip install scooby.




	Parameters

	
	add_pckgpackages, optional

	Package or list of packages to add to output information (must be
imported beforehand).



	ncolint, optional

	Number of package-columns in html table (no effect in text-version);
Defaults to 3.



	text_widthint, optional

	The text width for non-HTML display modes



	sortbool, optional

	Sort the packages when the report is shown









Examples

>>> import pytest
>>> import dateutil
>>> from emg3d import Report
>>> Report()                            # Default values
>>> Report(pytest)                      # Provide additional package
>>> Report([pytest, dateutil], ncol=5)  # Set nr of columns













          

      

      

    

  

    
      
          
            
  
EMArray


	
class emg3d.utils.EMArray

	Bases: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Create an EM-ndarray: add amplitude <amp> and phase <pha> methods.


	Parameters

	
	dataarray

	Data to which to add .amp and .pha attributes.









Examples

>>> import numpy as np
>>> from empymod.utils import EMArray
>>> emvalues = EMArray(np.array([1+1j, 1-4j, -1+2j]))
>>> print(f"Amplitude         : {emvalues.amp()}")
Amplitude         : [1.41421356 4.12310563 2.23606798]
>>> print(f"Phase (rad)       : {emvalues.pha()}")
Phase (rad)       : [ 0.78539816 -1.32581766 -4.24874137]
>>> print(f"Phase (deg)       : {emvalues.pha(deg=True)}")
Phase (deg)       : [  45.          -75.96375653 -243.43494882]
>>> print(f"Phase (deg; lead) : {emvalues.pha(deg=True, lag=False)}")
Phase (deg; lead) : [-45.          75.96375653 243.43494882]





Methods Summary







	amp()

	Amplitude of the electromagnetic field.



	pha([deg, unwrap, lag])

	Phase of the electromagnetic field.






Methods Documentation


	
amp()

	Amplitude of the electromagnetic field.






	
pha(deg=False, unwrap=True, lag=True)

	Phase of the electromagnetic field.


	Parameters

	
	degbool

	If True the returned phase is in degrees, else in radians.
Default is False (radians).



	unwrapbool

	If True the returned phase is unwrapped.
Default is True (unwrapped).



	lagbool

	If True the returned phase is lag, else lead defined.
Default is True (lag defined).





















          

      

      

    

  

    
      
          
            
  
Command Line Interface

Functions related to the command-line interface (CLI) of emg3d.

Consult the CLI interface section in the documentation for more information.


emg3d.cli.main Module

Entry point for the command-line interface (CLI).


Functions







	main([args])

	Parsing command line inputs of CLI interface.











emg3d.cli.parser Module

Parser for the configuration file of the command-line interface.


Functions







	parse_config_file(args_dict)

	Read and parse the configuration file and set defaults.











emg3d.cli.run Module

Functions that actually call emg3d within the CLI interface.


Functions







	initiate_logger(cfg, runtime, verb)

	Initiate logger for CLI of emg3d.



	simulation(args_dict)

	Run emg3d invoked by CLI.














          

      

      

    

  

    
      
          
            
  
main


	
emg3d.cli.main.main(args=None)

	Parsing command line inputs of CLI interface.









          

      

      

    

  

    
      
          
            
  
parse_config_file


	
emg3d.cli.parser.parse_config_file(args_dict)

	Read and parse the configuration file and set defaults.


	Parameters

	
	args_dictdict

	Arguments from terminal, see emg3d.cli.main().







	Returns

	
	confdict

	Configuration-dict.

















          

      

      

    

  

    
      
          
            
  
initiate_logger


	
emg3d.cli.run.initiate_logger(cfg, runtime, verb)

	Initiate logger for CLI of emg3d.









          

      

      

    

  

    
      
          
            
  
simulation


	
emg3d.cli.run.simulation(args_dict)

	Run emg3d invoked by CLI.

Run and log emg3d given the settings stored in the config file, overruled
by settings passed in args_dict (which correspond to command-line
arguments).

Results are saved to files according to provided settings.


	Parameters

	
	args_dictdict

	Arguments from terminal, see emg3d.cli.main(). Parameters passed
in args_dict overrule parameters in the config.
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